Skip to main content

Advertisement

Log in

Pulse-height defect in single-crystal CVD diamond detectors

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The pulse-height versus deposited energy response of a single-crystal chemical vapor deposition (scCVD) diamond detector was measured for ions of Ti, Cu, Nb, Ag, Xe, Au, and of fission fragments of 252 Cf at different energies. For the fission fragments, data were also measured at different electric field strengths of the detector. Heavy ions have a significant pulse-height defect in CVD diamond material, which increases with increasing energy of the ions. It also depends on the electrical field strength applied at the detector. The measured pulse-height defects were explained in the framework of recombination models. Calibration methods known from silicon detectors were modified and applied. A comparison with data for the pulse-height defect in silicon detectors was performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Schmitt, W.E. Kiker, C.W. Williams, Phys. Rev. 137, B837 (1965)

    Article  ADS  Google Scholar 

  2. B.D. Wilkins et al., Nucl. Instrum. Methods 92, 381 (1971)

    Article  ADS  Google Scholar 

  3. S.B. Kaufman et al., Nucl. Instrum. Methods 115, 47 (1974)

    Article  ADS  Google Scholar 

  4. J.B. Moulton et al., Nucl. Instrum. Methods 157, 325 (1978)

    Article  ADS  Google Scholar 

  5. B.M. Golovin, V.P. Kushniruk, L.A. Permiakova, Preprint of JINR 15-82520 (1982) (in Russian).

  6. S.I Mulgin, V.N Okolovich, S.V Zhdanov, Nucl. Instrum. Methods 388, 254 (1997)

    Article  ADS  Google Scholar 

  7. M. Pomorski et al., Phys. Status Solidi (a) 202, 2199 (2005)

    Article  ADS  Google Scholar 

  8. M. Pomorski et al., Phys. Status Solidi (a) 203, 3152 (2006)

    Article  ADS  Google Scholar 

  9. M. Friedl, Diploma Thesis, University of Technology, Vienna, 1999, http://www.hephy.at/user/friedl/da/da.pdf

  10. C. Bauer et al., Nucl. Instrum. Methods 383, 64 (1996)

    Article  ADS  Google Scholar 

  11. A. Oh, M. Moll, A. Wagner, W. Zeuner, Diam. Relat. Mater. 9, 1897 (2000)

    Article  ADS  Google Scholar 

  12. E. Berdermann et al., Diam. Relat. Mater. 17, 1159 (2008)

    Article  ADS  Google Scholar 

  13. Y. Sato et al., EPL 104, 22003 (2013)

    Article  ADS  Google Scholar 

  14. Y. Sato, H. Murakami, Jpn. J. Appl. Phys. 54, 096401 (2015)

    Article  ADS  Google Scholar 

  15. M.O. Fregeau et al., Nucl. Instrum. Methods A 791, 58 (2015)

    Article  ADS  Google Scholar 

  16. O. Beliuskina, GSI scientific report, 2013, DOI:10.15120/GR-2014-1-NUSTAR-SHE-07

  17. M. Rejmund et al., Nucl. Instrum. Methods A 646, 184 (2011)

    Article  ADS  Google Scholar 

  18. E.M. Kozulin, N.A. Kondratjev, I.V. Pokrovski, Scientific Report 1995-1996, JINR, FLNR, Dubna (1997)

  19. M.G. Itkis et al., Phys. Rev. C 59, 3172 (1999)

    Article  ADS  Google Scholar 

  20. Element Six, The Element Six CVD Diamond Handbook, see www.e6.com

  21. J.F. Ziegler, J.P. Biersack, M.D. Ziegler, SRIM-2013.00, The Stopping and Range of Ions in Matter (2013) http://www.SRIM.org

  22. E.C. Finch, Nucl. Instrum. Methods 113, 41 (1973)

    Article  ADS  Google Scholar 

  23. E.C. Finch et al., Nucl. Instrum. Methods 142, 539 (1977)

    Article  ADS  Google Scholar 

  24. E.C. Finch, M. Ashgar, M. Forte, Nucl. Instrum. Methods 163, 467 (1979)

    Article  ADS  Google Scholar 

  25. M. Ogihara et al., Nucl. Instrum. Methods A 251, 313 (1986)

    Article  ADS  Google Scholar 

  26. V.K. Eremin, N.B. Strokan, N.I. Tisiek, Phys. Tech. Semicond. 10, 58 (1976) (in Russian)

    Google Scholar 

  27. V.P. Kushniruk, Preprint of JINR 13-11933, 13-11889 (in Russian) (1978)

  28. Yu.K. Akimov, Semiconductor Detectors in Experimental Physics (Energoatomizdat, 1989) p. 87 (in Russian)

  29. G.L. Miller et al., IRE Trans. Nucl. Sci. 1NS-7, 185 (1960)

    Article  Google Scholar 

  30. W. Shockley, W.T. Read jr., Phys. Rev. 87, 835 (1952)

    Article  ADS  Google Scholar 

  31. R.N. Hall, Phys. Rev. 87, 387 (1952)

    Article  ADS  Google Scholar 

  32. P.A. Tove, W. Seibt, Nucl. Instrum. Methods 51, 261 (1967)

    Article  ADS  Google Scholar 

  33. W. Seibt, K.E. Sundstroem, P.A. Tove, Nucl. Instrum. Methods 113, 317 (1973)

    Article  ADS  Google Scholar 

  34. R.N. Williams, E.M. Lawson, Nucl. Instrum. Methods 120, 261 (1974)

    Article  ADS  Google Scholar 

  35. E. Gaubas et al., Sensors 15, 13424 (2015)

    Article  Google Scholar 

  36. N. Naka, H. Morimoto, I. Akimoto, Phys. Status Solidi (a) 213, 2551 (2016)

    Article  Google Scholar 

  37. G.N. Knyazheva et al., Nucl. Instrum. Methods B 248, 7 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Beliuskina.

Additional information

Communicated by T. Motobayashi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beliuskina, O., Strekalovsky, A.O., Aleksandrov, A.A. et al. Pulse-height defect in single-crystal CVD diamond detectors. Eur. Phys. J. A 53, 32 (2017). https://doi.org/10.1140/epja/i2017-12223-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12223-8

Navigation