Skip to main content
Log in

Entropy production and effective viscosity in heavy-ion collisions

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The entropy production and an effective viscosity in central Au+Au collisions are estimated in a wide range of incident energies 3.3 GeV \(\le \sqrt{s_{NN}}\le\) 39 GeV. The simulations are performed within a three-fluid model employing three different equations of state with and without deconfinement transition, which are equally good in the reproduction of the momentum-integrated elliptic flow of charged particles in the considered energy range. It is found that more than 80% entropy is produced during a short early collision stage which lasts ∼ 1 fm/c at the highest considered energies \(\sqrt{s_{NN}}\gtrsim 20\) GeV. The estimated values of the viscosity-to-entropy ratio (\(\eta\)/s) are approximately the same in all considered scenarios. At the final stages of the system expansion they range from ∼ 0.05 at the highest considered energies to ∼ 0.5 at the lowest ones. It is found that the \(\eta\)/s ratio decreases with the temperature (T) rise, approximately as \(\sim 1/T^{4}\), and exhibits a rather weak dependence on the net-baryon density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Berges, J.P. Blaizot, F. Gelis, J. Phys. G 39, 085115 (2012) arXiv:1203.2042 [hep-ph]

    Article  ADS  Google Scholar 

  2. K. Fukushima, arXiv:1603.02340 [nucl-th]

  3. U. Heinz, R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013) arXiv:1301.2826 [nucl-th]

    Article  ADS  Google Scholar 

  4. G. Kestin, U.W. Heinz, Eur. Phys. J. C 61, 545 (2009) arXiv:0806.4539 [nucl-th]

    Article  ADS  Google Scholar 

  5. STAR Collaboration (L. Adamczyk et al.), Phys. Rev. C 86, 054908 (2012) arXiv:1206.5528 [nucl-ex]

    Article  Google Scholar 

  6. H. Petersen, J. Steinheimer, G. Burau, M. Bleicher, H. Stocker, Phys. Rev. C 78, 044901 (2008) arXiv:0806.1695 [nucl-th]

    Article  ADS  Google Scholar 

  7. I.A. Karpenko, P. Huovinen, H. Petersen, M. Bleicher, Phys. Rev. C 91, 064901 (2015) arXiv:1502.01978 [nucl-th]

    Article  ADS  Google Scholar 

  8. K. Itakura, O. Morimatsu, H. Otomo, Phys. Rev. D 77, 014014 (2008) arXiv:0711.1034 [hep-ph]

    Article  ADS  Google Scholar 

  9. A.S. Khvorostukhin, V.D. Toneev, D.N. Voskresensky, Nucl. Phys. A 845, 106 (2010) arXiv:1003.3531 [nucl-th]

    Article  ADS  Google Scholar 

  10. G.S. Denicol, C. Gale, S. Jeon, J. Noronha, Phys. Rev. C 88, 064901 (2013) arXiv:1308.1923 [nucl-th]

    Article  ADS  Google Scholar 

  11. G.P. Kadam, H. Mishra, Phys. Rev. C 92, 035203 (2015) arXiv:1506.04613 [hep-ph]

    Article  ADS  Google Scholar 

  12. Y.B. Ivanov, A.A. Soldatov, Phys. Rev. C 91, 024914 (2015) arXiv:1401.2265 [nucl-th]

    Article  ADS  Google Scholar 

  13. Yu.B. Ivanov, V.N. Russkikh, V.D. Toneev, Phys. Rev. C 73, 044904 (2006) arXiv:nucl-th/0503088

    Article  ADS  Google Scholar 

  14. V.M. Galitsky, I.N. Mishustin, Sov. J. Nucl. Phys. 29, 181 (1979)

    Google Scholar 

  15. A.S. Khvorostukhin, V.V. Skokov, K. Redlich, V.D. Toneev, Eur. Phys. J. C 48, 531 (2006) arXiv:nucl-th/0605069

    Article  ADS  Google Scholar 

  16. FOPI Collaboration (A. Andronic et al.), Phys. Lett. B 612, 173 (2005) arXiv:nucl-ex/0411024

    Article  ADS  Google Scholar 

  17. Y.B. Ivanov, A.A. Soldatov, Eur. Phys. J. A 52, 117 (2016) arXiv:1604.03261 [nucl-th]

    Article  ADS  Google Scholar 

  18. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1987)

  19. D.H. Rischke, Lect. Notes Phys. 516, 21 (1999) arXiv:nucl-th/9809044

    Article  ADS  Google Scholar 

  20. Yu.B. Ivanov, Phys. Rev. C 87, 064904 (2013) arXiv:1302.5766 [nucl-th]

    Article  ADS  Google Scholar 

  21. Yu.B. Ivanov, Phys. Rev. C 87, 064905 (2013) arXiv:1304.1638 [nucl-th]

    Article  ADS  Google Scholar 

  22. V.N. Russkikh, Yu.B. Ivanov, Phys. Rev. C 76, 054907 (2007) arXiv:nucl-th/0611094

    Article  ADS  Google Scholar 

  23. Yu.B. Ivanov, V.N. Russkikh, Phys. At. Nucl. 72, 1238 (2009) arXiv:0810.2262 [nucl-th]

    Article  Google Scholar 

  24. S. Horvat, V.K. Magas, D.D. Strottman, L.P. Csernai, Phys. Lett. B 692, 277 (2010) arXiv:1007.4754 [nucl-th]

    Article  ADS  Google Scholar 

  25. L.P. Csernai, D.D. Strottman, C. Anderlik, Phys. Rev. C 85, 054901 (2012)

    Article  ADS  Google Scholar 

  26. M. Reiter, A. Dumitru, J. Brachmann, J.A. Maruhn, H. Stöcker, W. Greiner, Nucl. Phys. A 643, 99 (1998) arXiv:nucl-th/9806010

    Article  ADS  Google Scholar 

  27. P. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005) arXiv:hep-th/0405231

    Article  ADS  Google Scholar 

  28. L.M. Satarov, Yad. Fiz. 52, 412 (1990) (Sov. J. Nucl. Phys. 52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. B. Ivanov.

Additional information

Communicated by G. Torrieri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, Y.B., Soldatov, A.A. Entropy production and effective viscosity in heavy-ion collisions. Eur. Phys. J. A 52, 367 (2016). https://doi.org/10.1140/epja/i2016-16367-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16367-7

Navigation