Skip to main content
Log in

Particle production and chemical freezeout from the hybrid UrQMD approach at NICA energies

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The energy dependence of various particle ratios is calculated within the Ultra-relativistic Quantum Molecular Dynamics approach and compared with the hadron resonance gas (HRG) model and measurements from various experiments, including RHIC-BES, SPS and AGS. It is found that the UrQMD particle ratios agree well with the experimental results at the RHIC-BES energies. Thus, we have utilized UrQMD in simulating particle ratios at other beam energies down to 3GeV, which will be accessed at NICA and FAIR future facilities. We observe that the particle ratios for crossover and first-order phase transition, implemented in the hybrid UrQMD v3.4, are nearly indistinguishable, especially at low energies (at large baryon chemical potentials or high density).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.P. Singh, Phys. Rep. 236, 147 (1993)

    Article  ADS  Google Scholar 

  2. B. Muller, Rep. Prog. Phys. 58, 611 (1995)

    Article  ADS  Google Scholar 

  3. M. Gyulassy, L. McLarren, Nucl. Phys. A 750, 30 (2005)

    Article  ADS  Google Scholar 

  4. Abdel Nasser Tawfik, Int. J. Mod. Phys. A 29, 1430021 (2014)

    Article  Google Scholar 

  5. P. Braun-Munzinger, J. Stachel, J.P. Wessels, N. Xu, Phys. Lett. B 344, 43 (1995)

    Article  ADS  Google Scholar 

  6. P. Braun-Munzinger, J. Stachel, J.P. Wessels, N. Xu, Phys. Lett. B 365, 1 (1996)

    Article  ADS  Google Scholar 

  7. P. Braun-Munzinger, I. Heppe, J. Stachel, Phys. Lett. B 465, 15 (1999)

    Article  ADS  Google Scholar 

  8. J. Cleymans, H. Satz, Z. Phys. C 57, 135 (1993)

    Article  ADS  Google Scholar 

  9. S.K. Tiwari, C.P. Singh, Adv. High Energy Phys. 2013, 805413 (2013)

    Article  MathSciNet  Google Scholar 

  10. J. Rafelski, J. Letessier, Phys. Rev. Lett. 85, 4695 (2000)

    Article  ADS  Google Scholar 

  11. F. Becattini, J. Cleymans, A. Keranen, E. Suhonen, K. Redlich, Phys. Rev. C 64, 024901 (2001)

    Article  ADS  Google Scholar 

  12. J. Cleymans, D. Elliott, A. Keranen, E. Suhonen, Phys. Rev. C 57, 3319 (1998)

    Article  ADS  Google Scholar 

  13. R. Averbeck, R. Holzmann, V. Metag, R.S. Simon, Phys. Rev. C 67, 024903 (2003)

    Article  ADS  Google Scholar 

  14. STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  15. STAR Collaboration (M.M. Aggarwal), An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement, arXiv:1007.2613 [nucl-ex]

  16. W. Broniowski, A. Baran, W. Florkowski, Acta Phys. Pol. B 33, 4235 (2002)

    ADS  Google Scholar 

  17. W. Broniowski, W. Florkowski, Phys. Rev. C 65, 064905 (2002)

    Article  ADS  Google Scholar 

  18. P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 638, 3 (1998)

    Article  ADS  Google Scholar 

  19. Z. Fodor, S.D. Katz, JHEP 04, 050 (2004)

    Article  ADS  Google Scholar 

  20. P. deForcrand, O. Philipsen, Nucl. Phys. B 642, 290 (2002)

    Article  ADS  Google Scholar 

  21. A. Tawfik, M.Y. El-Bakry, D.M. Habashy, M.T. Mohamed, E. Abbas, Int. J. Mod. Phys. E 25, 1650018 (2016)

    Article  ADS  Google Scholar 

  22. H. Petersen et al., Phys. Rev. C 78, 044901 (2008)

    Article  ADS  Google Scholar 

  23. K.A. Olive et al., Chin. Phys. C 38, 1 (2014)

    Article  ADS  Google Scholar 

  24. A. Andronic, P. Braun-Munzinger, J. Stachel, Nucl. Phys. A 772, 167 (2006)

    Article  ADS  Google Scholar 

  25. Abdel Nasser Tawfik, Ehab Abbas, Phys. Part. Nucl. Lett. 12, 521 (2015)

    Article  Google Scholar 

  26. Abdel Nasser Tawfik, M.Y. El-Bakry, D.M. Habashy, M.T. Mohamed, Ehab Abbas, Int. J. Mod. Phys. E 24, 1550067 (2015)

    Article  Google Scholar 

  27. S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)

    Article  ADS  Google Scholar 

  28. Steinheimer, S. Schramm, H. Stocker, Phys. Rev. C 84, 045208 (2011)

    Article  ADS  Google Scholar 

  29. J. Steinheimer, V. Dexheimer, M. Bleicher, H. Petersen, S. Schramm, H. Stocker, Phys. Rev. C 81, 044913 (2010)

    Article  ADS  Google Scholar 

  30. Jussi Auvinen, Hannah Petersen, Phys. Rev. C 88, 064908 (2013)

    Article  ADS  Google Scholar 

  31. D.H. Rischke, Y. Pursun, J.A. Maruhn, Nucl. Phys. A 596, 717 (1996)

    Article  Google Scholar 

  32. D. Zschiesche, H. Stocker, W. Greiner, Phys. Rev. C 65, 064902 (2002)

    Article  ADS  Google Scholar 

  33. P. Huovinen, H. Petersen, Eur. Phys. J. A 48, 171 (2012)

    Article  ADS  Google Scholar 

  34. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 92, 112301 (2004)

    Article  Google Scholar 

  35. NA49 Collaboration (S.V. Afanasiev et al.), Phys. Rev. C 66, 054902 (2002)

    Article  Google Scholar 

  36. NA49 Collaboration (C. Alt et al.), Phys. Rev. C 77, 024903 (2008)

    Article  Google Scholar 

  37. E895 Collaboration (J.L. Kaly et al.), Phys. Rev. C 68, 054905 (2003)

    Article  Google Scholar 

  38. STAR Collaboration (L. Ruan et al.), J. Phys. G 31, S1029 (2005)

    Article  ADS  Google Scholar 

  39. NA49 Collaboration (T. Anticic et al.), Phys. Rev. Lett. 93, 022302 (2004)

    Article  Google Scholar 

  40. NA49 Collaboration (C. Alt et al.), Phys. Rev. C 78, 034918 (2008)

    Article  Google Scholar 

  41. E895 Collaboration (C. Pinkenburg et al.), Nucl. Phys. A 698, 495c (2002)

    Article  ADS  Google Scholar 

  42. NA49 Collaboration (C. Alt et al.), Phys. Rev. Lett. 94, 192301 (2005)

    Article  Google Scholar 

  43. NA49 Collaboration (S.V. Afanasiev et al.), Phys. Lett. B 358, 275 (2002)

    Google Scholar 

  44. NA57 Collaboration (F. Antinori et al.), Phys. Lett. B 595, 68 (2004)

    Article  ADS  Google Scholar 

  45. STAR Collaboration (M.M. Aggarwal et al.), Phys. Rev. C 83, 024901 (2011)

    Article  Google Scholar 

  46. STAR Collaboration (L. Kumar), J. Phys. G: Nucl. Part. Phys. 38, 124145 (2011)

    Article  ADS  Google Scholar 

  47. STAR Collaboration (S. Das), Nucl. Phys. A. 904, 891c (2013)

    Google Scholar 

  48. STAR Collaboration (X. Zhu), Acta Phys. Pol. B. Proc. Suppl. 5, 213 (2012)

    Article  Google Scholar 

  49. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 79, 034909 (2009)

    Article  Google Scholar 

  50. J. Cleymans, H. Oeschler, K. Redlich, S. Wheaton, Phys. Rev. C 73, 034905 (2006)

    Article  ADS  Google Scholar 

  51. HADES Collaboration (G. Agakishiev et al.), Eur. Phys. J. A 47, 21 (2011)

    Article  Google Scholar 

  52. FOPI Collaboration (X. Lopez et al.), Phys. Rev. C 76, 052203 (2007)

    Google Scholar 

  53. P. Alba, W. Alberico, R. Bellwied, M. Bluhm, V.M. Sarti, M. Nahrgang, C. Ratti, Phys. Lett. B 738, 305 (2014)

    Article  ADS  Google Scholar 

  54. V.P. Konchakovski, W. Cassing, Yu.B. Ivanov, V.D. Toneev, Phys. Rev. C 90, 014903 (2014)

    Article  ADS  Google Scholar 

  55. Yu.B. Ivanov, A.A. Soldatov, Phys. Rev. C 91, 024914 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel Nasser Tawfik.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasser Tawfik, A., Abou-Salem, L., Shalaby, A. et al. Particle production and chemical freezeout from the hybrid UrQMD approach at NICA energies. Eur. Phys. J. A 52, 324 (2016). https://doi.org/10.1140/epja/i2016-16324-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16324-6

Navigation