Skip to main content
Log in

Momentum dependence of the imaginary part of the \( \omega\)- and \( \eta^{\prime}\)-nucleus optical potential

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The photoproduction of \( \omega\) and \( \eta^{\prime}\) mesons off carbon and niobium nuclei has been measured as a function of the meson momentum for incident photon energies of 1.2-2.9GeV at the electron accelerator ELSA. The mesons have been identified via the \(\omega \rightarrow \pi^{0} \gamma \rightarrow 3 \gamma\) and \(\eta^{\prime} \rightarrow \pi^{0} \pi^{0}\eta \rightarrow 6 \gamma\) decays, respectively, registered with the CBELSA/TAPS detector system. From the measured meson momentum distributions the momentum dependence of the transparency ratio has been determined for both mesons. Within a Glauber analysis the in-medium \( \omega\) and \(\eta^{\prime}\) widths and the corresponding absorption cross sections have been deduced as a function of the meson momentum. The results are compared to recent theoretical predictions for the in-medium \( \omega\) width and \( \eta^{\prime}\)-N absorption cross sections. The energy dependence of the imaginary part of the \( \omega\)- and \(\eta^{\prime}\)-nucleus optical potential has been extracted. The finer binning of the present data compared to the existing data allows a more reliable extrapolation towards the production threshold. The modulus of the imaginary part of the \(\eta^{\prime}\)-nucleus potential is found to be about three times smaller than recently determined values of the real part of the \(\eta^{\prime}\)-nucleus potential, which makes the \(\eta^{\prime}\) meson a suitable candidate for the search for meson-nucleus bound states. For the \( \omega\) meson, the modulus of the imaginary part near threshold is comparable to the modulus of the real part of the potential. As a consequence, only broad structures can be expected, which makes the observation of \( \omega\) mesic states very difficult experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Hayano, T. Hatsuda, Rev. Mod. Phys. 82, 2949 (2010)

    Article  ADS  Google Scholar 

  2. S. Leupold, V. Metag, U. Mosel, Int. J. Mod. Phys. 19, 147 (2010)

    Article  ADS  Google Scholar 

  3. E. Oset et al., Int. J. Mod. Phys. E 21, 1230011 (2012)

    Article  ADS  Google Scholar 

  4. H. Nagahiro, S. Hirenzaki, Phys. Rev. Lett. 94, 232503 (2005)

    Article  ADS  Google Scholar 

  5. I. Strakovsky et al., Phys. Rev. C 91, 045207 (2015)

    Article  ADS  Google Scholar 

  6. E. Czerwinski et al., Phys. Rev. Lett. 113, 062004 (2014)

    Article  ADS  Google Scholar 

  7. T. Yamazaki, Y. Akaishi, Phys. Lett. B 535, 70 (2002)

    Article  ADS  Google Scholar 

  8. M. Agnello et al., Phys. Rev. Lett. 94, 212303 (2005)

    Article  ADS  Google Scholar 

  9. T. Yamazaki et al., Phys. Rev. Lett. 104, 132502 (2010)

    Article  ADS  Google Scholar 

  10. Y. Ichikawa et al., Prog. Theor. Exp. Phys. 2015, 021D01 (2015)

    Article  Google Scholar 

  11. G. Agakishiev et al., Phys. Lett. B 742, 242 (2015)

    Article  ADS  Google Scholar 

  12. E. Epple, L. Fabbietti, Phys. Rev. C 92, 044002 (2015)

    Article  ADS  Google Scholar 

  13. H. Gilg et al., Phys. Rev. C 62, 025201 (2000)

    Article  ADS  Google Scholar 

  14. K. Itahashi et al., Phys. Rev. C 62, 025202 (2000)

    Article  ADS  Google Scholar 

  15. H. Geissel et al., Phys. Rev. Lett. 88, 122301 (2002)

    Article  ADS  Google Scholar 

  16. K. Suzuki et al., Phys. Rev. Lett. 92, 072302 (2004)

    Article  ADS  Google Scholar 

  17. P. Kienle, T. Yamazaki, Prog. Part. Nucl. Phys. 52, 85 (2004)

    Article  ADS  Google Scholar 

  18. J. Weil, U. Mosel, V. Metag, Phys. Lett. B 723, 120 (2013)

    Article  ADS  Google Scholar 

  19. CBELSA/TAPS Collaboration (M. Kotulla et al.), Phys. Rev. Lett. 100, 192302 (2008)

    Article  Google Scholar 

  20. CBELSA/TAPS Collaboration (M. Kotulla et al.), Phys. Rev. Lett. 114, 199903 (2015)

    Article  ADS  Google Scholar 

  21. E.Ya. Paryev, J. Phys. G: Nucl. Part. Phys. 40, 025201 (2013)

    Article  ADS  Google Scholar 

  22. CBELSA/TAPS Collaboration (M. Nanova et al.), Phys. Lett. B 727, 417 (2013)

    Article  Google Scholar 

  23. CBELSA/TAPS Collaboration (M. Nanova et al.), Phys. Lett. B 710, 600 (2012)

    Article  ADS  Google Scholar 

  24. V. Metag et al., Prog. Part. Nucl. Phys. 67, 530 (2012)

    Article  ADS  Google Scholar 

  25. V. Metag, Hyperfine Interact. 234, 25 (2015)

    Article  ADS  Google Scholar 

  26. CBELSA/TAPS Collaboration (S. Friedrich et al.), Phys. Lett. B 736, 26 (2014)

    Article  Google Scholar 

  27. D. Cabrera, R. Rapp, Phys. Lett. B 729, 67 (2014)

    Article  ADS  Google Scholar 

  28. A. Ramos et al., Eur. Phys. J. A 49, 148 (2013)

    Article  ADS  Google Scholar 

  29. F. Klingl, T. Waas, W. Weise, Nucl. Phys. A 650, 299 (1999)

    Article  ADS  Google Scholar 

  30. M.F.M. Lutz, G. Wolf, B. Friman, Nucl. Phys. A 706, 431 (2002) 765

    Article  ADS  Google Scholar 

  31. P. Mühlich et al., Nucl. Phys. A 780, 187 (2006)

    Article  ADS  Google Scholar 

  32. E. Oset, A. Ramos, Phys. Lett. B 704, 334 (2012)

    Article  ADS  Google Scholar 

  33. D. Husmann, W.J. Schwille, Phys. Bl. 44, 40 (1988)

    Article  Google Scholar 

  34. W. Hillert, Eur. Phys. J. A 28, 139 (2006) (Supplement 1, s01)

    Article  ADS  Google Scholar 

  35. The Crystal Barrel Collaboration (E. Aker et al.), Nucl. Instrum. Methods A 321, 69 (1992)

    Article  ADS  Google Scholar 

  36. R. Novotny, IEEE Trans. Nucl. Sci. 38, 379 (1991)

    Article  ADS  Google Scholar 

  37. A.R. Gabler et al., Nucl. Instrum. Methods A 346, 168 (1994)

    Article  ADS  Google Scholar 

  38. Particle Data Group (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014)

    Article  Google Scholar 

  39. CBELSA/TAPS Collaboration (A. Thiel et al.), Phys. Rev. Lett. 109, 102001 (2012)

    Article  Google Scholar 

  40. J.G. Messchendorp et al., Eur. Phys. J. A 11, 95 (2001)

    Article  ADS  Google Scholar 

  41. M. Kaskulov, E. Hernandez, E. Oset, Eur. Phys. J. A 31, 245 (2007)

    Article  ADS  Google Scholar 

  42. CBELSA/TAPS Collaboration (F. Dietz et al.), Eur. Phys. J. A 51, 6 (2015)

    Article  Google Scholar 

  43. CBELSA/TAPS Collaboration (I. Jaegle et al.), Eur. Phys. J. A 47, 11 (2011)

    Article  Google Scholar 

  44. C. Ciofi degli Atti, S. Simula, Phys. Rev. C 53, 1689 (1996)

    Article  ADS  Google Scholar 

  45. R. Brun, GEANT, Cern/DD/ee/84-1 (1986)

  46. M. Thiel et al., Eur. Phys. J. A 49, 132 (2013)

    Article  ADS  Google Scholar 

  47. T. Falter, S. Leupold, U. Mosel, Phys. Rev. C 64, 024608 (2001)

    Article  ADS  Google Scholar 

  48. N. Bianchi et al., Phys. Rev. C 54, 1688 (1996)

    Article  ADS  Google Scholar 

  49. V. Muccifora et al., Phys. Rev. C 60, 064616 (1999)

    Article  ADS  Google Scholar 

  50. D. Cabrera et al., Nucl. Phys. A 733, 130 (2004)

    Article  ADS  Google Scholar 

  51. J. Nieves, E. Oset, C. Garcia-Recio, Nucl. Phys. A 554, 509 (1993)

    Article  ADS  Google Scholar 

  52. C.W. de Jager, D. de Vries, C. de Vries, At. Data Nucl. Data Tables 14, 479 (1974)

    Article  ADS  Google Scholar 

  53. G.I. Lykasov et al., Eur. Phys. J. A 6, 71 (1999)

    Article  ADS  Google Scholar 

  54. O. Buss et al., Phys. Rep. 512, 1 (2012)

    Article  ADS  Google Scholar 

  55. H. Lenske, private communication (2015)

  56. K. Itahashi et al., Prog. Theor. Phys. 128, 601 (2012)

    Article  ADS  Google Scholar 

  57. N. Muramatsu, Few-Body Syst. 128, 997 (2013)

    Article  ADS  Google Scholar 

  58. V. Metag, approved proposal ELSA/03-2012-BGO-OD

  59. H. Nagahiro et al., Phys. Rev. C 87, 045201 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M. Nanova.

Additional information

Communicated by P. Salabura

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

The CBELSA/TAPS Collaboration., Friedrich, S., Nanova, M. et al. Momentum dependence of the imaginary part of the \( \omega\)- and \( \eta^{\prime}\)-nucleus optical potential. Eur. Phys. J. A 52, 297 (2016). https://doi.org/10.1140/epja/i2016-16297-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16297-4

Navigation