Skip to main content

Advertisement

Log in

Coupled-channels Faddeev AGS calculation of K-ppn and K-ppp quasi-bound states

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Using separable \( \bar{K}N\) - \( \pi\Sigma\) potentials in the Faddeev equations, we calculated the binding energies and widths of the \( K^{-}pp\), \( K^{-}ppn\) and \( K^{-}ppp\) quasi-bound states on the basis of three- and four-body Alt-Grassberger-Sandhas equations in the momentum representation. One- and two-pole version of \( \bar{K}N\) - \( \pi\Sigma\) interaction are considered and the dependence of the resulting few-body energy on the two-body \( \bar{K}N\) - \( \pi\) \( \Sigma\) potential was investigated. The s -wave [3 + 1] and [2 + 2] sub-amplitudes are obtained by using the Hilbert-Schmidt expansion procedure for the integral kernels. As a result, we found a four-body resonance of the K - ppn and \( K^{-}ppp\) quasi-bound states with a binding energy in the range \( B_{K^{-}ppn} \sim \) 55-70 and \( B_{K^{-}ppp} \sim \) 90-100 MeV, respectively. The calculations yielded full width of \( \Gamma_{K^{-}ppn} \sim\) 16-20 and \( \Gamma_{K^{-}ppp} \sim \) 7-20 MeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Akaishi, T. Yamazaki, Phys. Rev. C 65, 044005 (2002)

    Article  ADS  Google Scholar 

  2. T. Yamazaki, Y. Akaishi, Phys. Lett. B 535, 70 (2002)

    Article  ADS  Google Scholar 

  3. A. Dote, H. Horiuchi, Y. Akaishi, T. Yamazaki, Phys. Lett. B 590, 51 (2004)

    Article  ADS  Google Scholar 

  4. A. Dote, H. Horiuchi, Y. Akaishi, T. Yamazaki, Phys. Rev. C 70, 044313 (2004)

    Article  ADS  Google Scholar 

  5. A. Dote, H. Horiuchi, Y. Akaishi, T. Yamazaki, Phys. Rev. C 70, 044313 (2004)

    Article  ADS  Google Scholar 

  6. N.V. Shevchenko, A. Gal, J. Mares, Phys. Rev. Lett. 98, 082301 (2007)

    Article  ADS  Google Scholar 

  7. N.V. Shevchenko, A. Gal, J. Mares, J. Revai, Phys. Rev. C 76, 044004 (2007)

    Article  ADS  Google Scholar 

  8. Y. Ikeda, T. Sato, Phys. Rev. C 76, 035203 (2007)

    Article  ADS  Google Scholar 

  9. Y. Ikeda, T. Sato, Phys. Rev. C 79, 035201 (2009)

    Article  ADS  Google Scholar 

  10. A. Dote, T. Hyodo, W. Weise, Nucl. Phys. A 804, 197 (2008)

    Article  ADS  Google Scholar 

  11. A. Dote, T. Hyodo, W. Weise, Phys. Rev. C 79, 014003 (2009)

    Article  ADS  Google Scholar 

  12. Y. Ikeda, H. Kamano, T. Sato, Prog. Theor. Phys. 124, 533 (2010)

    Article  ADS  Google Scholar 

  13. S. Maeda, Y. Akaishi, T. Yamazaki, Proc. Jpn. Acad., Ser. B 89, 418 (2013)

    Article  Google Scholar 

  14. T. Yamazaki, Y. Akaishi, Proc. Jpn. Acad. Ser. B 83, 144 (2007)

    Article  Google Scholar 

  15. T. Yamazaki, Y. Akaishi, Phys. Rev. C 76, 045201 (2007)

    Article  ADS  Google Scholar 

  16. W. Heitler, F. London, Z. Phys. 44, 455 (1927)

    Article  ADS  Google Scholar 

  17. M. Agnello et al., Phys. Rev. Lett. 94, 212303 (2005)

    Article  ADS  Google Scholar 

  18. A. Ramos, V.K. Magas, E. Oset, H. Toki, Nucl. Phys. A 804, 219 (2008)

    Article  ADS  Google Scholar 

  19. T. Nagae, J-PARC E27 proposal

  20. Y. Ichikawa et al., Prog. Theor. Exp. Phys. 2015, 021D01 (2015)

    Article  Google Scholar 

  21. T. Yamazaki et al., Phys. Rev. Lett. 104, 132502 (2010)

    Article  ADS  Google Scholar 

  22. P. Kienle et al., Eur. Phys. J. A 48, 183 (2012)

    Article  ADS  Google Scholar 

  23. L. Fabbietti, HADES data

  24. A. Fix, H. Arenhovel, Phys. Rev. C 66, 024002 (2002)

    Article  ADS  Google Scholar 

  25. E.O. Alt, P. Grassberger, W. Sandhas, Nucl. Phys. B 2, 167 (1967)

    Article  ADS  Google Scholar 

  26. P. Grassberger, W. Sandhas, Nucl. Phys. B 2, 181 (1967)

    Article  ADS  Google Scholar 

  27. I.M. Nadrodetsky, Nucl. Phys. A 221, 191 (1974)

    Article  ADS  Google Scholar 

  28. S.A. Sofianos, N.J. McGurk, H. Fiedeldey, Nucl. Phys. A 318, 295 (1979)

    Article  ADS  Google Scholar 

  29. N.V. Shevchenko, Nucl. Phys. A 890-891, 50 (2012)

    Article  ADS  Google Scholar 

  30. N.V. Shevchenko, Phys. Rev. C 85, 034001 (2012)

    Article  ADS  Google Scholar 

  31. H. Zankel, W. Plessas, J. Haidenbauer, Phys. Rev. C 28, 538 (1983)

    Article  ADS  Google Scholar 

  32. M. Bazzi et al., Phys. Lett. B 704, 133 (2011)

    Article  Google Scholar 

  33. N. Barnea, A. Gal, E.Z. Liverts, Phys. Lett. B 712, 132 (2012)

    Article  ADS  Google Scholar 

  34. Roman Ya. Kezerashvili, Sh.M. Tsiklauri, EPJ Web of Conferences 81, 02022 (2014)

    Article  Google Scholar 

  35. M. Iwasaki, J-PARC E15 proposal

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Marri.

Additional information

Communicated by R. Alkofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marri, S., Kalantari, S.Z. Coupled-channels Faddeev AGS calculation of K-ppn and K-ppp quasi-bound states. Eur. Phys. J. A 52, 282 (2016). https://doi.org/10.1140/epja/i2016-16282-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16282-y

Navigation