Skip to main content
Log in

Analysis methods of safe Coulomb-excitation experiments with radioactive ion beams using the GOSIA code

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

With the recent advances in radioactive ion beam technology, Coulomb excitation at safe energies becomes an important experimental tool in nuclear-structure physics. The usefulness of the technique to extract key information on the electromagnetic properties of nuclei has been demonstrated since the 1960s with stable beam and target combinations. New challenges present themselves when studying exotic nuclei with this technique, including dealing with low statistics or number of data points, absolute and relative normalisation of the measured cross-sections and a lack of complementary experimental data, such as excited-state lifetimes and branching ratios. This paper addresses some of these common issues and presents analysis techniques to extract transition strengths and quadrupole moments utilising the least-squares fit code, GOSIA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.G. Jenkins, Nat. Phys. 10, 909 (2014)

    Article  MathSciNet  Google Scholar 

  2. A. Görgen, J. Phys. G: Nucl. Part. Phys. 37, 103101 (2010)

    Article  ADS  Google Scholar 

  3. D. Cline, Annu. Rev. Nucl. Part. Sci. 36, 683 (1986)

    Article  ADS  Google Scholar 

  4. T. Czosnyka, D. Cline, C.Y. Wu, Bull. Am. Phys. Soc. 28, 745 (1983)

    Google Scholar 

  5. D. Cline, Gosia User Manual for Simulation and Analysis of Coulomb Excitation Experiments (Rochester, NY, US, 2012) http://www.pas.rochester.edu/~cline/Gosia/Gosia_Manual_20120510.pdf

  6. K. Alder, A. Winther, Coulomb Excitation: A Collection of Reprints (Academic Publishing, New York, 1966)

  7. K. Alder, A. Bohr, T. Huus, B. Mottelson, A. Winther, Rev. Mod. Phys. 28, 432 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  8. D. Cline, P.M.S. Lesser, C. Townsley, unpublished (1974)

  9. L. Hasselgren, D. Cline, $E2$ Matrix Elements and Shape Coexistence in ${}^{110}Pd$, in Interacting Bose-Fermi Systems in Nuclei, edited by F. Iachello (Springer, US, 1981) pp. 59--63

  10. B. Kotliński, Quadrupole collectivity in ${}^{72}Ge$, ${}^{110}Pd$, and ${}^{168}Er$, PhD Thesis, University of Rochester (1984)

  11. C.Y. Wu, $E2$ Collective behaviour in the even-even osmium and platinum nuclei, PhD Thesis, University of Rochester (1983)

  12. C.Y. Wu et al., Phys. Rev. C 40, R3 (1989)

    Article  ADS  Google Scholar 

  13. C.Y. Wu et al., Nucl. Phys. A 533, 359 (1991)

    Article  ADS  Google Scholar 

  14. C.Y. Wu et al., Nucl. Phys. A 607, 178 (1996)

    Article  ADS  Google Scholar 

  15. C. Fahlander et al., Nucl. Phys. A 485, 327 (1988)

    Article  ADS  Google Scholar 

  16. B. Kotliński et al., Nucl. Phys. A 519, 646 (1990)

    Article  ADS  Google Scholar 

  17. A. Kavka et al., Nucl. Phys. A 593, 177 (1995)

    Article  ADS  Google Scholar 

  18. B. Kotliński et al., Nucl. Phys. A 517, 365 (1990)

    Article  ADS  Google Scholar 

  19. T. Czosnyka et al., Nucl. Phys. A 458, 123 (1986)

    Article  ADS  Google Scholar 

  20. R. Ibbotson et al., Phys. Rev. Lett. 71, 1990 (1993)

    Article  ADS  Google Scholar 

  21. G. Breit, R. Gluckstern, J. Russell, Phys. Rev. 103, 727 (1956)

    Article  ADS  Google Scholar 

  22. J. de Boer, J. Eichler, The Reorientation Effect, in Advanced in Nuclear Physics, edited by M. Baranger, E. Vogt, Vol. 1 (Springer, US, 1968) Chapt. 1, pp. 1--65

  23. L.P. Gaffney et al., Phys. Rev. C 89, 024307 (2014)

    Article  ADS  Google Scholar 

  24. N. Bree et al., Phys. Rev. Lett. 112, 162701 (2014)

    Article  ADS  Google Scholar 

  25. E. Clément et al., Phys. Rev. C 75, 054313 (2007)

    Article  ADS  Google Scholar 

  26. K. Wrzosek-Lipska, to be published in Phys. Rev. C

  27. N. Kesteloot et al., Phys. Rev. C 92, 054301 (2015)

    Article  ADS  Google Scholar 

  28. D. Radford et al., Phys. Rev. Lett. 88, 222501 (2002)

    Article  ADS  Google Scholar 

  29. J.M. Allmond et al., Phys. Rev. C 90, 034309 (2014)

    Article  ADS  Google Scholar 

  30. N. Warr et al., Eur. Phys. J. A 49, 40 (2013)

    Article  ADS  Google Scholar 

  31. N. Bree, Shape coexistence in the neutron-deficient mercury isotopes studied through Coulomb excitation, PhD Thesis, KU Leuven (2014).

  32. A. Görgen et al., Eur. Phys. J. A 26, 153 (2005)

    Article  ADS  Google Scholar 

  33. T. Grahn et al., Phys. Rev. C 80, 014324 (2009)

    Article  ADS  Google Scholar 

  34. L.P. Gaffney et al., Nature 497, 199 (2013)

    Article  ADS  Google Scholar 

  35. J. Van de Walle et al., Phys. Rev. C 79, 014309 (2009)

    Article  ADS  Google Scholar 

  36. D. Cline, P.M.S. Lesser, Nucl. Instrum. Methods 82, 291 (1970)

    Article  ADS  Google Scholar 

  37. P.M.S. Lesser, D. Cline, P. Goode, R.N. Horoshko, Nucl. Phys. A 190, 597 (1972)

    Article  ADS  Google Scholar 

  38. D. Rogers, Nucl. Instrum. Methods 127, 253 (1975)

    Article  ADS  Google Scholar 

  39. M. Albers et al., Phys. Rev. Lett. 108, 062701 (2012)

    Article  ADS  Google Scholar 

  40. M. Albers et al., Nucl. Phys. A 899, 1 (2013)

    Article  ADS  Google Scholar 

  41. L.P. Gaffney et al., Eur. Phys. J. A 51, 136 (2015)

    Article  ADS  Google Scholar 

  42. J. Ljungvall et al., Phys. Rev. C 81, 061301 (2010)

    Article  ADS  Google Scholar 

  43. W. Rother et al., Phys. Rev. Lett. 106, 022502 (2011)

    Article  ADS  Google Scholar 

  44. L.P. Gaffney et al., Phys. Rev. C 91, 064313 (2015)

    Article  ADS  Google Scholar 

  45. A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. II: Nuclear Deformations (W. A. Benjamin, New York, NY, USA, 1969)

  46. M. Zielińska et al., Phys. Rev. C 80, 014317 (2009)

    Article  ADS  Google Scholar 

  47. D.D. DiJulio et al., Phys. Rev. C 86, 031302 (2012)

    Article  ADS  Google Scholar 

  48. D.D. DiJulio et al., Eur. Phys. J. A 48, 105 (2012)

    Article  ADS  Google Scholar 

  49. B. Siebeck et al., Phys. Rev. C 91, 014311 (2015)

    Article  ADS  Google Scholar 

  50. C. Sotty et al., Phys. Rev. Lett. 115, 172501 (2015)

    Article  ADS  Google Scholar 

  51. G. Alaga, K. Alder, A. Bohr, B. Mottelson, K. Dan. Vidensk. Selsk. Mat.-Fys. Medd. 29, (1955)

  52. C. Plaisir et al., Phys. Rev. C 89, 021302 (2014)

    Article  ADS  Google Scholar 

  53. T. Roger, private communications

  54. K. Alder, A. Winther, Electromagnetic Excitation: Theory of Coulomb Excitation with Heavy Ions (North-Holland Publ. Co., 1975)

  55. J. Srebrny et al., Nucl. Phys. A 766, 25 (2006)

    Article  ADS  Google Scholar 

  56. F. Bosch, H. Spehl, Z. Phys. A 280, 329 (1977)

    Article  ADS  Google Scholar 

  57. R. Brenn, H. Spehl, A. Weckherlin, H.A. Doubt, G. Middelkoop, Z. Phys. A 281, 219 (1977)

    Article  ADS  Google Scholar 

  58. A.E. Kavka, Coulomb excitation: analytical methods and experimental results on even selenium nuclei, PhD Thesis, University of Uppsala (1989)

  59. J.N. Orce et al., Phys. Rev. C 86, 041303 (2012)

    Article  ADS  Google Scholar 

  60. E. Clément et al., Phys. Rev. Lett. 116, 022701 (2016)

    Article  ADS  Google Scholar 

  61. M. Lindroos, P. Butler, M. Huyse, K. Riisager, Nucl. Instrum. Methods B 266, 4687 (2008)

    Article  ADS  Google Scholar 

  62. SPIRAL2 Web Page at GANIL: http://www.ganil-spiral2.eu/spiral2

  63. ARIEL Web Page at TRIUMF: http://www.triumf.ca/ariel

  64. CARIBU Web Page at ANL: http://www.phy.anl.gov/atlas/caribu/

  65. G. Pretea et al., EPJ Web of Conferences 66, 11030 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zielińska.

Additional information

Communicated by P. Woods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zielińska, M., Gaffney, L.P., Wrzosek-Lipska, K. et al. Analysis methods of safe Coulomb-excitation experiments with radioactive ion beams using the GOSIA code. Eur. Phys. J. A 52, 99 (2016). https://doi.org/10.1140/epja/i2016-16099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16099-8

Keywords

Navigation