Skip to main content
Log in

Experimental and analysis methods in radiochemical experiments

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

Radiochemical experiments made the history of neutrino physics by achieving the first observation of solar neutrinos (Cl experiment) and the first detection of the fundamental \( pp\) solar neutrinos component (Ga experiments). They measured along decades the integral \( \nu_{e}\) charged current interaction rate in the exposed target. The basic operation principle is the chemical separation of the few atoms of the new chemical species produced by the neutrino interactions from the rest of the target, and their individual counting in a low-background counter. The smallness of the expected interaction rate (1 event per day in a \( \sim 100\) ton target) poses severe experimental challenges on the chemical and on the counting procedures. The main aspects related to the analysis techniques employed in solar neutrino experiments are reviewed and described, with a special focus given to the event selection and the statistical data treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Davis et al., Phys. Rev. Lett. 20, 1205 (1968)

    Article  ADS  Google Scholar 

  2. B. Pontecorvo, Chalk River Lab. PD-205 report (1946)

  3. J.N. Bahcall, Phys. Rev. Lett. 12, 300 (1964)

    Article  ADS  Google Scholar 

  4. BOREXINO Collaboration, Nature 512, 383 (2014)

    Article  ADS  Google Scholar 

  5. A. Serenelli, S. Basu, J. Ferguson, M. Asplund, Astrophys. J. L123, 705 (2009) arXiv:0909.2668 and A. Serenelli, arXiv:0910.3690 (2009)

    Google Scholar 

  6. T. Schwetz, M. Tortola, J.W.F. Valle, New J. Phys. 10, 113011 (2008)

    Article  ADS  Google Scholar 

  7. B.T. Cleveland et al., Astrophys. J. 496, 505 (1998)

    Article  ADS  Google Scholar 

  8. J. Boger et al., Astrophys. J. 537, 1080 (2000)

    Article  ADS  Google Scholar 

  9. B.T. Cleveland et al., Nucl. Instrum. Methods 214, 451 (1983)

    Article  Google Scholar 

  10. SAGE Collaboration (A.I. Abdurashitov et al.), Phys. Rev. C. 60, 055801 (1999)

    Article  Google Scholar 

  11. SAGE Collaboration (A.I. Abazov et al.), Phys. Rev. Lett. 67, 3332 (1991)

    Article  Google Scholar 

  12. GALLEX Collaboration (P. Anselmann et al.), Phys. Lett. B 285, 376 (1992)

    Article  Google Scholar 

  13. GNO Collaboration (M. Altmann et al.), Phys. Lett. B 490, 16 (2000)

    Article  Google Scholar 

  14. SAGE Collaboration (J.N. Abdurashitov et al.), Phys. Rev. C 80, 015807 (2009)

    Article  Google Scholar 

  15. D Frekers et al., Phys. Rev. C 91, 034608 (2015)

    Article  ADS  Google Scholar 

  16. SAGE Collaboration (J.N. Abdurashitov et al.), Phys. Rev. C. 59, 2246 (1999)

    Article  Google Scholar 

  17. GALLEX Collaboration (P. Anselman et al.), Phys. Lett. B 342, 440 (1995)

    Article  ADS  Google Scholar 

  18. GALLEX Collaboration (W. Hampel et al.), Phys. Lett. B 420, 114 (1998)

    Article  ADS  Google Scholar 

  19. SAGE Collaboration (J.N. Abdurashitov et al.), Phys. Rev. C 73, 045805 (2006)

    Article  Google Scholar 

  20. Gallex Collaboration (W. Hampel et al.), Phys. Lett. B 436, 158 (1998)

    Article  ADS  Google Scholar 

  21. R. Wink et al., Nucl. Instrum. Methods A 329, 541 (1993)

    Article  ADS  Google Scholar 

  22. W. Hampel, L.P. Remsberg, Phys. Rev. C 31, 667 (1985)

    Article  ADS  Google Scholar 

  23. GALLEX Collaboration (W. Hampel et al.), Phys. Lett. B 447, 127 (1999)

    Article  ADS  Google Scholar 

  24. GNO Collaboration (M. Altmann et al.), Phys. Lett. B 616, 174 (2005)

    Article  ADS  Google Scholar 

  25. M. Cribier et al., Astropart. Phys. 6, 129 (1997)

    Article  ADS  Google Scholar 

  26. F. Kaether et al., Phys. Lett. B 685, 47 (2010)

    Article  ADS  Google Scholar 

  27. L. Pandola et al., Nucl. Instrum. Methods A 522, 521 (2004)

    Article  ADS  Google Scholar 

  28. J.N. Abdurashitov et al., Astropart. Phys. 25, 349 (2006)

    Article  ADS  Google Scholar 

  29. P.A. Sturrock, M.A. Weber, Astroph. J. 565, 1366 (2002)

    Article  ADS  Google Scholar 

  30. D.O. Caldwell, P.A. Sturrock, Nucl. Phys. B (Proc. Suppl.) 124, 239 (2003)

    Article  ADS  Google Scholar 

  31. L. Pandola, Astropart. Phys. 22, 219 (2004)

    Article  ADS  Google Scholar 

  32. J.N. Bahcall, Phys. Rev. C 56, 3391 (1997)

    Article  ADS  Google Scholar 

  33. M. Acero, C. Giunti, M. Laveder, Phys. Rev. D 78, 073009 (2008)

    Article  ADS  Google Scholar 

  34. G. Bellini et al., JHEP 08, 038 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Cattadori.

Additional information

Communicated by C. Broggini

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cattadori, C.M., Pandola, L. Experimental and analysis methods in radiochemical experiments. Eur. Phys. J. A 52, 83 (2016). https://doi.org/10.1140/epja/i2016-16083-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16083-4

Keywords

Navigation