Skip to main content
Log in

Rapidity bin multiplicity correlations from a multi-phase transport model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The central-arbitrary bin and forward-backward bin multiplicity correlation patterns for Au+Au collisions at \( \sqrt{s_{NN}} = 7.7-62.4\) GeV are investigated within a multi-phase transport (AMPT) model. An interesting observation is that for \( \sqrt{s_{NN}} < 19.6\) GeV Au+Au collisions, these two correlation patterns both have an increase with the pseudorapidity gap, while for \( \sqrt{s_{NN}} > 19.6\) GeV Au+Au collisions, they decrease. We mainly discuss the influence of different evolution stages of collision system on the central-arbitrary bin correlations, such as the initial conditions, partonic scatterings, hadronization scheme and hadronic scatterings. Our results show that the central-arbitrary bin multiplicity correlations have different responses to partonic phase and hadronic phase, which can be suggested as a good probe to explore the dynamical evolution mechanism of the hot dense matter in high-energy heavy-ion collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005)

    Article  ADS  Google Scholar 

  2. PHENIX Collaboration (K. Adcox et al.), Nucl. Phys. A 757, 184 (2005)

    Article  ADS  Google Scholar 

  3. PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. Lett. 91, 182301 (2003)

    Article  Google Scholar 

  4. Berndt Müller, Nucl. Phys. A 750, 84 (2005)

    Article  Google Scholar 

  5. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 91, 172302 (2003)

    Article  Google Scholar 

  6. E. Wang, X.N. Wang, Phys. Rev. Lett. 87, 142301 (2001)

    Article  ADS  Google Scholar 

  7. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 93, 252301 (2004)

    Article  Google Scholar 

  8. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. C 79, 034909 (2009)

    Article  Google Scholar 

  9. STAR Collaboration (C. Adler et al.), Phys. Rev. C 66, 034904 (2002)

    Article  Google Scholar 

  10. STAR Collaboration (J. Adams et al.), Phys. Rev. C 72, 014904 (2005)

    Article  Google Scholar 

  11. STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 91, 072304 (2003)

    Article  Google Scholar 

  12. S. Pratt, Phys. Rev. Lett. 102, 232301 (2009)

    Article  ADS  Google Scholar 

  13. STAR Collaboration (B.I. Abelev et al.), Phys. Lett. B 690, 239 (2010)

    Article  ADS  Google Scholar 

  14. P.L. Jain, K. Sengupta, G. Singh, Phys. Rev. D 34, 2286 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  15. N.S. Amelin, N. Armesto, M.A. Braun, E.G. Ferreiro, C. Pajares, Phys. Rev. Lett. 73, 2813 (1994)

    Article  ADS  Google Scholar 

  16. STAR Collaboration (B.I. Abelev et al.), Phys. Rev. Lett. 103, 172301 (2009)

    Article  Google Scholar 

  17. V.P. Konchakovski, M. Hauer, G. Torrieri, M.I. Gorenstein, E.L. Bratkovskaya, Phys. Rev. C 79, 034910 (2009)

    Article  ADS  Google Scholar 

  18. S.A. Bass, P. Danielewicz, S. Pratt, Phys. Rev. Lett. 85, 2689 (2000)

    Article  ADS  Google Scholar 

  19. S. Jeon, S. Pratt, Phys. Rev. C 65, 044902 (2002)

    Article  ADS  Google Scholar 

  20. Long-Gang Pang, Guang-You Qin, Victor Roy, Xin-Nian Wang, Guo-Liang Ma, Phys. Rev. C 91, 044904 (2015)

    Article  ADS  Google Scholar 

  21. Long-Gang Pang, Hannah Petersen, Guang-You Qin, Victor Roy, Xin-Nian Wang, arXiv:1511.04131

  22. Adam Bzdak, Phys. Rev. C 85, 051901 (2012)

    Article  ADS  Google Scholar 

  23. Huichao Song, Steffen A. Bass, Ulrich W. Heinz, Tetsufumi Hirano, ChunShen, Phys. Rev. Lett. 106, 192301 (2011)

    Article  ADS  Google Scholar 

  24. Huichao Song, Steffen A. Bass, Ulrich W. Heinz, Phys. Rev. C 83, 024912 (2011)

    Article  ADS  Google Scholar 

  25. Z. Xu, C. Greiner, Phys. Rev. C 71, 064901 (2005)

    Article  ADS  Google Scholar 

  26. Z. Xu, C. Greiner, Phys. Rev. C 76, 024911 (2007)

    Article  ADS  Google Scholar 

  27. Ben-Hao Sa, Dai-Mei Zhou, Yu-Liang Yan, Bao-Guo Dong, Xu Cai, Comput. Phys. Commun. 184, 1476 (2013)

    Article  ADS  Google Scholar 

  28. Zi-Wei Lin, C.M. Ko, Subrata Pal, Phys. Rev. Lett. 89, 152301 (2002)

    Article  ADS  Google Scholar 

  29. Zi-Wei Lin, Che Ming Ko, Bao-An Li, Bin Zhang, Subrata Pal, Phys. Rev. C 72, 064901 (2005)

    Article  ADS  Google Scholar 

  30. X.N. Wang, Phys. Rev. D 43, 104 (1991)

    Article  ADS  Google Scholar 

  31. X.N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991)

    Article  ADS  Google Scholar 

  32. X.N. Wang, M. Gyulassy, Phys. Rev. D 45, 844 (1992)

    Article  ADS  Google Scholar 

  33. M. Gyulassy, X.N. Wang, Comput. Phys. Commun. 83, 307 (1994)

    Article  ADS  Google Scholar 

  34. B. Zhang, Comput. Phys. Commun. 109, 193 (1998)

    Article  ADS  Google Scholar 

  35. B. Andersson, G. Gustafson, B. Soderberg, Z. Phys. C 20, 317 (1983)

    Article  ADS  Google Scholar 

  36. T. Sjostrand, Comput. Phys. Commun. 82, 74 (1994)

    Article  ADS  Google Scholar 

  37. L.W. Chen, C.M. Ko, Phys. Lett. B 634, 205 (2006)

    Article  ADS  Google Scholar 

  38. B.A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995)

    Article  ADS  Google Scholar 

  39. B.A. Li, A.T. Sustich, B. Zhang, C.M. Ko, Int. J. Phys. E 10, 267 (2001)

    Article  ADS  Google Scholar 

  40. G.L. Ma, Y.G. Ma, Phys. Rev. C 89, 044907 (2014)

    Article  ADS  Google Scholar 

  41. Adam Bzdak, Guo-Liang Ma, Phys. Rev. Lett. 113, 252301 (2014)

    Article  ADS  Google Scholar 

  42. Y.V. Kovchegov, E. Levin, L. McLerran, Phys. Rev. C 63, 024903 (2001)

    Article  ADS  Google Scholar 

  43. Yuanfang Wu, Lianshou Liu, Yingdan Wang, Yuting Bai, Hongbo Liao, Phys. Rev. E 71, 017103 (2005)

    Article  ADS  Google Scholar 

  44. N. Xu for the STAR Collaboration, Nucl. Phys. A 931, 1 (2014)

    Article  Google Scholar 

  45. Sudipan De, T. Tarnowsky, T.K. Nayak, R.P. Scharenberg, B.K. Srivastava, Phys. Rev. C 88, 044903 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-Juan Wang.

Additional information

Communicated by Xin-Nian Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, MJ., Chen, G., Wu, YF. et al. Rapidity bin multiplicity correlations from a multi-phase transport model. Eur. Phys. J. A 52, 46 (2016). https://doi.org/10.1140/epja/i2016-16046-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16046-9

Keywords

Navigation