Skip to main content
Log in

Can we improve the calculation of some excitation functions for deuteron-induced reactions?

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

In this paper, we propose to use the CDCC* approach to calculate (d,p) excitation functions. Starting from the CDCC* results, we derive some (d,p) differential and integrated cross sections, then using a simple semi-phenomenological model, we calculate the excitation functions for this process. We compare our calculations with the experimental cross sections for the 27Al (d, p)28Al, 58Fe(d, p)59Fe, 59Co(d, p)60Co, 75As(d, p)76As, 81Br(d, p)82Br, 84Kr(d, p)85Kr, 86Kr(d, p)87Kr, 108Pd (d, p)109Pd, 140Ce(d, p)141Ce, 142Ce(d, p)143Ce, 141Pr(d, p)142Pr, 165Ho(d, p)166Ho, and 180Hf (d, p)181Hf reactions. We plan to include these cross sections into evaluations of d-induced reactions and this could be a first step for improving of the quality of the next decade cross sections libraries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.C. Urey, F.G. Brickwedde, G.M. Murphy, Phys. Rev. 39, 164 (1932) DOI:10.1103/PhysRev.40.1

    Article  ADS  Google Scholar 

  2. T.W. Bonner, W.M. Brubaker, Phys. Rev. 47, 910 (1935) DOI:10.1103/PhysRev.47.910

    Article  ADS  Google Scholar 

  3. J.R. Oppenheimer, M. Phillips, Phys. Rev. 48, 500 (1935) DOI:10.1103/PhysRev.48.500

    Article  ADS  MATH  Google Scholar 

  4. J.J. Livingood, Phys. Rev. 50, 425 (1936) DOI:10.1103/PhysRev.50.425

    Article  ADS  Google Scholar 

  5. H.A. Bethe, Phys. Rev. 53, 39 (1938) DOI:10.1103/PhysRev.53.39

    Article  ADS  MATH  Google Scholar 

  6. G.H. Rawitscher, Phys. Rev. C 9, 2210 (1974) DOI:10.1103/PhysRevC.9.2210

    Article  ADS  Google Scholar 

  7. R.C. Johnson, P.J.R. Soper, Phys. Rev. C 1, 976 (1970) DOI:10.1103/PhysRevC.1.976

    Article  ADS  Google Scholar 

  8. M. Yahiro, M. Kamimura, Prog. Theor. Phys. 65, 2046 (1981) DOI:10.1143/PTP.65.2046

    Article  ADS  Google Scholar 

  9. M. Yahiro, M. Kamimura, Prog. Theor. Phys. 65, 2051 (1981) DOI:10.1143/PTP.65.2051

    Article  ADS  Google Scholar 

  10. M. Yahiro et al., Prog. Theor. Phys. 67, 1467 (1982) DOI:10.1143/PTP.67.1467

    Article  ADS  Google Scholar 

  11. M. Yahiro et al., Prog. Theor. Phys. Suppl. 89, 1 (1986) DOI:10.1143/PTPS.89.1

    Article  ADS  Google Scholar 

  12. N. Austern et al., Phys. Rep. 154, 125 (1987) DOI:10.1016/0370-1573(87)90094-9

    Article  ADS  Google Scholar 

  13. P. Chau-Huu Tai, Nucl. Phys. A 773, 56 (2006) DOI:10.1016/j.nuclphysa.2006.04.006

    Article  ADS  Google Scholar 

  14. T. Tamura, Rev. Mod. Phys. 37, 679 (1965) DOI:10.1103/RevModPhys.37.679

    Article  ADS  Google Scholar 

  15. M. Masaki et al., Nucl. Phys. A 573, 1 (1994) DOI:10.1016/0375-9474(94)90012-4

    Article  ADS  Google Scholar 

  16. K. Hirota et al., Nucl. Phys. A 628, 547 (1998) DOI:10.1016/S0375-9474(97)00641-6

    Article  ADS  Google Scholar 

  17. M. Yamaguchi et al., Nucl. Phys. A 747, 3 (2005) DOI:10.1016/j.nuclphysa.2004.09.001

    Article  ADS  Google Scholar 

  18. E.D. Klema, L.L. Lee, J.P. Schiffer, Phys. Rev. 161, 1134 (1967) DOI:10.1103/PhysRev.161.1134

    Article  ADS  Google Scholar 

  19. K.C. McLean et al., Nucl. Phys. A 191, 417 (1972) DOI:10.1016/0375-9474(72)90525-8

    Article  ADS  Google Scholar 

  20. L. Závorka et al., J. Korean Phys. Soc. 59, 1961 (2011) DOI:10.3938/jkps.59.1961

    Article  Google Scholar 

  21. M.U. Khandaker et al., Nucl. Instrum. Methods B 316, 33 (2013) DOI:10.1016/j.nimb.2013.08.032

    Article  ADS  Google Scholar 

  22. B. Kiraly et al., Nucl. Instrum. Methods B 267, 15 (2009) DOI:10.1016/j.nimb.2008.11.005

    Article  ADS  Google Scholar 

  23. F. Ditrói et al., Nucl. Instrum. Methods B 270, 61 (2012) DOI:10.1016/j.nimb.2011.10.010

    Article  ADS  Google Scholar 

  24. E. Schuster, K. Wohlleben, Int. J. Appl. Radiat. Isot. 19, 471 (1968) DOI:10.1016/0020-708X(68)90100-2

    Article  Google Scholar 

  25. R.L. Wilson et al., Phys. Rev. C 13, 976 (1976) DOI:10.1103/PhysRevC.13.976

    Article  ADS  Google Scholar 

  26. P. Bém et al., Phys. Rev. C 79, 044610 (2009) DOI:10.1103/PhysRevC.79.044610

    Article  ADS  Google Scholar 

  27. R. Michel, M. Galas, Int. J. Appl. Radiat. Isot. 34, 1325 (1983) DOI:10.1016/0020-708X(83)90023-6

    Article  Google Scholar 

  28. F. Ditrói et al., Nucl. Instrum. Methods B 268, 2571 (2010) DOI:10.1016/j.nimb.2010.06.033

    Article  ADS  Google Scholar 

  29. N. Baron, B.L. Cohen, Phys. Rev. 129, 2636 (1963) DOI:10.1103/PhysRev.129.2636

    Article  ADS  Google Scholar 

  30. H.F. Röhm, H. Münzel, J. Inorg. Nucl. Chem. 34, 1773 (1972) DOI:10.1016/0022-1902(72)80523-2

    Article  Google Scholar 

  31. H.I. West Jr. et al., Phys. Rev. C 47, 248 (1993) DOI:10.1103/PhysRevC.47.248

    Article  ADS  Google Scholar 

  32. F. Ditrói et al., Appl. Radiat. Isot. 70, 574 (2012) DOI:10.1016/j.apradiso.2011.12.034

    Article  Google Scholar 

  33. F. Simonelli et al., Radiochim. Acta 98, 187 (2010) DOI:10.1524/ract.2010.1709

    Article  Google Scholar 

  34. F. Tárkányi et al., Nucl. Instrum. Methods B 316, 22 (2013) DOI:10.1016/j.nimb.2013.08.031

    Article  Google Scholar 

  35. J. Lange, H. Münzel, Radiochim. Acta 9, 66 (1968) DOI:10.1524/ract.1968.9.23.66

    Article  Google Scholar 

  36. A. Hermanne et al., Nucl. Instrum. Methods B 267, 727 (2009) DOI:10.1016/j.nimb.2008.12.017

    Article  ADS  Google Scholar 

  37. F. Tárkányi et al., Nucl. Instrum. Methods B 266, 3529 (2008) DOI:10.1016/j.nimb.2008.05.123

    Article  Google Scholar 

  38. A. Hermanne et al., Nucl. Instrum. Methods B 311, 102 (2013) DOI:10.1016/j.nimb.2013.06.014

    Article  ADS  Google Scholar 

  39. S. Takács et al., Nucl. Instrum. Methods B 268, 3443 (2010) DOI:10.1016/j.nimb.2010.08.016

    Article  ADS  Google Scholar 

  40. N. Keeley, R.S. Mackintosh, Phys. Rev. C 77, 054603 (2008) DOI:10.1103/PhysRevC.77.054603

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huu-Tai Pierre Chau.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierre Chau, HT. Can we improve the calculation of some excitation functions for deuteron-induced reactions?. Eur. Phys. J. A 51, 166 (2015). https://doi.org/10.1140/epja/i2015-15166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15166-0

Keywords

Navigation