Skip to main content
Log in

Heavy-ion double charge exchange reactions: A tool toward \(0 \nu\beta\beta\) nuclear matrix elements

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The knowledge of the nuclear matrix elements for the neutrinoless double beta decay is fundamental for neutrino physics. In this paper, an innovative technique to extract information on the nuclear matrix elements by measuring the cross section of a double charge exchange nuclear reaction is proposed. The basic point is that the initial- and final-state wave functions in the two processes are the same and the transition operators are similar. The double charge exchange cross sections can be factorized in a nuclear structure term containing the matrix elements and a nuclear reaction factor. First pioneering experimental results for the 40Ca(18O,18Ne)40Ar reaction at 270 MeV incident energy show that such cross section factorization reasonably holds for the crucial 0+ \( \rightarrow\) 0+ transition to 40Args, at least at very forward angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Caurier, J. Menendez, F. Nowacki, A. Poves, Phys. Rev. Lett. 100, 052503 (2008)

    Article  ADS  Google Scholar 

  2. J. Suhonen, M. Kortelainen, Int. J. Mod. Phys. E 17, 1 (2008)

    Article  ADS  Google Scholar 

  3. N.L. Vaquero, T.R. Rodriguez, J.L. Egido, Phys. Rev. Lett. 111, 142501 (2013)

    Article  ADS  Google Scholar 

  4. J. Barea, J. Kotila, F. Iachello, Phys. Rev. C 87, 014315 (2013)

    Article  ADS  Google Scholar 

  5. H. Akimune et al., Phys. Lett. B 394, 23 (1997)

    Article  ADS  Google Scholar 

  6. J.P. Schiffer et al., Phys. Rev. Lett. 100, 112501 (2008)

    Article  ADS  Google Scholar 

  7. D. Frekers, Prog. Part. Nucl. Phys. 64, 281 (2010)

    Article  ADS  Google Scholar 

  8. C.J. Guess et al., Phys. Rev. C 83, 064318 (2011)

    Article  ADS  Google Scholar 

  9. S.J. Freeman, J.P. Schiffer, J. Phys. G: Nucl. Part. Phys. 39, 124004 (2012)

    Article  ADS  Google Scholar 

  10. J. Barea, J. Kotila, F. Iachello, Phys. Rev. Lett. 109, 042501 (2012)

    Article  ADS  Google Scholar 

  11. Report to the Nuclear Science Advisory Committee, Neutrinoless Double Beta Decay (2014)

  12. J.D. Vergados, Phys. Rev. D 25, 914 (1982)

    Article  ADS  Google Scholar 

  13. A. Fazely, L.C. Liu, Phys. Rev. Lett. 57, 968 (1986)

    Article  ADS  Google Scholar 

  14. S. Mordechai et al., Phys. Rev. Lett. 61, 531 (1988)

    Article  ADS  Google Scholar 

  15. N. Auerbach et al., Ann. Phys. 192, 77 (1989)

    Article  ADS  Google Scholar 

  16. J. Blomgren et al., Phys. Lett. B 362, 34 (1995)

    Article  ADS  Google Scholar 

  17. F. Naulin et al., Phys. Rev. C 25, 1074 (1982)

    Article  ADS  Google Scholar 

  18. D.M. Drake et al., Phys. Rev. Lett. 45, 1765 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  19. D.R. Bes, O. Dragun, E.E. Maqueda, Nucl. Phys. A 405, 313 (1983)

    Article  ADS  Google Scholar 

  20. C.H. Dasso, A. Vitturi, Phys. Rev. C 34, 743 (1986)

    Article  ADS  Google Scholar 

  21. W. von Oertzen et al., Nucl. Phys. A 588, 129c (1995)

    Article  ADS  Google Scholar 

  22. H. Matsubara et al., Few-Body Syst. 54, 1433 (2013)

    Article  ADS  Google Scholar 

  23. D.M. Brink, Phys. Lett. B 40, 37 (1972)

    Article  ADS  Google Scholar 

  24. P. Puppe et al., Phys. Rev. C 84, 051305 (2011)

    Article  ADS  Google Scholar 

  25. H. Ejiri, Czech. J. Phys. 56, 459 (2006)

    Article  ADS  Google Scholar 

  26. J. Suhonen, M. Kortelainen, Czech J. Phys. 56, 519 (2006)

    Article  ADS  Google Scholar 

  27. W.P. Alford, B.M. Spicer, Adv. Nucl. Phys. 24, 1 (1998)

    Article  Google Scholar 

  28. J. Menéndez, D. Gazit, A. Schwenk, Phys. Rev. Lett. 107, 062501 (2011)

    Article  ADS  Google Scholar 

  29. L. Mandelstam, Ig. Tamm, J. Phys. USSR 9, 249 (1945)

    MathSciNet  Google Scholar 

  30. R.H. Lemmer (Editor), Workshop on Multistep Direct Reactions (World Scientific, 1992) ISBN 981-02-1171-6

  31. H. Feshbach, A. Kerman, S. Koonin, Ann. Phys. 125, 477 (1980)

    Article  MathSciNet  Google Scholar 

  32. T. Tamura, T. Udagawa, H. Lenske, Phys. Rev. C 26, 379 (1982)

    Article  ADS  Google Scholar 

  33. H. Nishioka, H.A. Weidenmuller, S. Yoshida, Ann. Phys. 183, 166 (1988)

    Article  ADS  Google Scholar 

  34. A.J. Koning, J.M. Akkermans, Comput. Phys. Commun. 85, 110 (1995)

    Article  ADS  Google Scholar 

  35. A.J. Koning, M.B. Chadwick, Phys. Rev. C 56, 970 (1997)

    Article  ADS  Google Scholar 

  36. T.N. Taddeucci et al., Phys. Rev. C 28, 2511 (1983)

    Article  ADS  Google Scholar 

  37. T.N. Taddeucci et al., Nucl. Phys. A 469, 125 (1987)

    Article  ADS  Google Scholar 

  38. F. Osterfeld, Rev. Mod. Phys. 64, 491 (1992)

    Article  ADS  Google Scholar 

  39. D. Frekers et al., Nucl. Phys. A 916, 219 (2013)

    Article  ADS  Google Scholar 

  40. Y. Fujita, B. Rubio, W. Gelletly, Prog. Part. Nucl. Phys. 66, 549 (2011)

    Article  ADS  Google Scholar 

  41. C. Baumer et al., Phys. Rev. C 71, 024603 (2005)

    Article  ADS  Google Scholar 

  42. A. Negret et al., J. Phys. G: Nucl. Part. Phys. 31, 1931 (2005)

    Article  Google Scholar 

  43. C. Brendel et al., Nucl. Phys. A 477, 162 (1988)

    Article  ADS  Google Scholar 

  44. H. Lenske, Nucl. Phys. A 482, 343c (1988)

    Article  ADS  Google Scholar 

  45. F. Cappuzzello et al., Nucl. Phys. A 739, 30 (2004)

    Article  ADS  Google Scholar 

  46. A. Etchegoyen et al., Phys. Rev. C 38, 2124 (1988)

    Article  ADS  Google Scholar 

  47. G.R. Satchler, Direct Nuclear reactions (Oxford Science Publications, 1983)

  48. Ph. Chomaz, N. Frascaria, Phys. Rep. 252, 275 (1995)

    Article  ADS  Google Scholar 

  49. F. Cappuzzello, MAGNEX: an innovative large acceptance spectrometer for nuclear reaction studies, in Magnets: Types, Uses and Safety (Nova Publisher Inc., New York, 2011) pp. 1--63

  50. M. Cavallaro et al., Eur. Phys. J. A 48, 59 (2012)

    Article  ADS  Google Scholar 

  51. D. Carbone et al., Eur. Phys. J. A 48, 60 (2012)

    Article  ADS  Google Scholar 

  52. M. Bondì et al., AIP Conf. Proc. 1595, 245 (2014)

    Article  ADS  Google Scholar 

  53. F. Cappuzzello et al., Nucl. Instrum. Methods A 621, 419 (2010)

    Article  ADS  Google Scholar 

  54. M. Cavallaro et al., Nucl. Instrum. Methods A 648, 46 (2011)

    Article  ADS  Google Scholar 

  55. F. Cappuzzello et al., Nucl. Instrum. Methods A 638, 74 (2011)

    Article  ADS  Google Scholar 

  56. M. Cavallaro et al., Nucl. Instrum. Methods A 637, 77 (2011)

    Article  ADS  Google Scholar 

  57. F. Cappuzzello et al., Nucl. Instrum. Methods A 763, 314 (2014)

    Article  ADS  Google Scholar 

  58. F. Ajzenberg-Selove et al., Phys. Rev. C 32, 756 (1985)

    Article  ADS  Google Scholar 

  59. D.R. Tilley et al., Nucl. Phys. A 595, 1 (1995)

    Article  ADS  Google Scholar 

  60. J.A. Cameron, B. Singh, Nucl. Data Sheets 109, 1 (2008)

    Article  ADS  Google Scholar 

  61. J. Hyvarinen, J. Suhonen, Phys. Rev. C 91, 024613 (2015)

    Article  ADS  Google Scholar 

  62. F. Hofmann, H. Lenske, Phys. Rev. C 57, 2281 (1998)

    Article  ADS  Google Scholar 

  63. Y. Fujita, private communication

  64. M. Matsuo, Phys. Rev. C 73, 044309 (2006)

    Article  ADS  Google Scholar 

  65. D.J.Mercer et al., Phys. Rev. C 49, 3104 (1994)

    Article  ADS  Google Scholar 

  66. D.E. Alburger, D.H. Wilkinson, Phys. Lett. B 32, 190 (1970)

    Article  ADS  Google Scholar 

  67. M. Bhattacharya, C.D. Goodman, A. Garcia, Phys. Rev. C 80, 055501 (2009)

    Article  ADS  Google Scholar 

  68. T. Chittrakarn et al., Phys. Rev. C 34, 80 (1986)

    Article  ADS  Google Scholar 

  69. B.K. Park et al., Phys. Rev. C 45, 1791 (1992)

    Article  ADS  Google Scholar 

  70. W. Tornow et al., Phys. Rev. C 42, 693 (1990)

    Article  ADS  Google Scholar 

  71. S. Adachi et al., Nucl. Phys. A 438, 1 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cavallaro.

Additional information

Communicated by N. Kalantar-Nayestanaki

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cappuzzello, F., Cavallaro, M., Agodi, C. et al. Heavy-ion double charge exchange reactions: A tool toward \(0 \nu\beta\beta\) nuclear matrix elements. Eur. Phys. J. A 51, 145 (2015). https://doi.org/10.1140/epja/i2015-15145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15145-5

Keywords

Navigation