Skip to main content
Log in

High-statistics study of the reaction γp → p2π0

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

An Erratum to this article was published on 24 December 2015

Abstract

The photoproduction of 2π 0 mesons off protons was studied with the Crystal Barrel/TAPS experiment at the electron accelerator ELSA in Bonn. The energy of photons produced in a radiator was tagged in the energy range from 600 MeV to 2.5 GeV. Differential and total cross sections and 0 π 0 Dalitz plots are presented. Part of the data was taken with a diamond radiator producing linearly polarized photons, and beam asymmetries were derived. Properties of nucleon and Δ resonances contributing to the 0 π 0 final state were determined within the Bonn-Gatchina (BnGa) partial-wave analysis. The data presented here allow us to determine branching ratios of nucleon and Δ resonances for their decays into 0 π 0 via several intermediate states. Most prominent are decays proceeding via Δ(1232)π, N(1440)1/2+ π, N(1520)3/2 π, N(1680)5/2+ π, but also pf 0(500), pf 0(980), and pf 2(1270) contribute to the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Manley, R.A. Arndt, Y. Goradia, V.L. Teplitz, Phys. Rev. D 30, 904 (1984).

    Article  ADS  Google Scholar 

  2. J. Vandermeulen, Z. Phys. A 342, 329 (1992).

    Article  ADS  Google Scholar 

  3. S. Capstick, N. Isgur, Phys. Rev. D 34, 2809 (1986).

    Article  ADS  Google Scholar 

  4. U. Löring, B.C. Metsch, H.R. Petry, Eur. Phys. J. A 10, 395 (2001).

    Article  ADS  Google Scholar 

  5. R.G. Edwards et al., Phys. Rev. D 84, 074508 (2011).

    Article  ADS  Google Scholar 

  6. S. Capstick, W. Roberts, Prog. Part. Nucl. Phys. 45, S241 (2000).

    Article  ADS  Google Scholar 

  7. S. Capstick, Phys. Rev. D 46, 2864 (1992).

    Article  ADS  Google Scholar 

  8. W. Hillert, Eur. Phys. J. A 28S1, 139 (2006).

    Article  ADS  Google Scholar 

  9. CBELSA/TAPS Collaboration (E. Gutz et al.), Eur. Phys. J. A 50, 74 (2014).

    Article  Google Scholar 

  10. A.V. Anisovich, R. Beck, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 48, 15 (2012).

    Article  ADS  Google Scholar 

  11. A.V. Anisovich, E. Klempt, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 49, 158 (2013).

    Article  ADS  Google Scholar 

  12. CBELSA/TAPS Collaboration (A. Thiel et al.), Phys. Rev. Lett. 114, 091803 (2015).

    Article  ADS  Google Scholar 

  13. CBELSA/TAPS Collaboration (V. Sokhoyan et al.), Phys. Lett. B 746, 127 (2015).

    Article  Google Scholar 

  14. Cambridge Bubble Chamber Group, Phys. Rev. 169, 1081 (1968).

    Article  ADS  Google Scholar 

  15. R. Erbe et al., Phys. Rev. 188, 2060 (1969).

    Article  ADS  Google Scholar 

  16. J. Ballam et al., Phys. Rev. D 5, 15 (1972).

    Article  ADS  Google Scholar 

  17. J. Ballam et al., Phys. Rev. D 5, 545 (1972).

    Article  ADS  Google Scholar 

  18. M. Davier et al., Nucl. Phys. B 58, 31 (1973).

    Article  ADS  Google Scholar 

  19. G. Gialanella et al., Nuovo Cimento A 63, 892 (1969).

    Article  ADS  Google Scholar 

  20. F. Carbonara et al., Nuovo Cimento A 36, 219 (1976).

    Article  ADS  Google Scholar 

  21. A. Braghieri et al., Phys. Lett. B 363, 46 (1995).

    Article  ADS  Google Scholar 

  22. M. Kotulla et al., Phys. Lett. B 578, 63 (2004).

    Article  ADS  Google Scholar 

  23. F. Härter et al., Phys. Lett. B 401, 229 (1997).

    Article  ADS  Google Scholar 

  24. M. Wolf et al., Eur. Phys. J. A 9, 5 (2000).

    Article  ADS  Google Scholar 

  25. W. Langgartner et al., Phys. Rev. Lett. 87, 052001 (2001).

    Article  ADS  Google Scholar 

  26. J. Ahrens et al., Phys. Lett. B 624, 173 (2005).

    Article  ADS  Google Scholar 

  27. J. Ahrens et al., Eur. Phys. J. A 34, 11 (2007).

    Article  ADS  Google Scholar 

  28. Crystal Ball at MAMI and TAPS and A2 Collaborations (D. Krambrich et al.), Phys. Rev. Lett. 103, 052002 (2009).

    Article  Google Scholar 

  29. Crystal Ball at MAMI, TAPS and A2 Collaborations (V.L. Kashevarov et al.), Phys. Rev. C 85, 064610 (2012).

    Article  Google Scholar 

  30. F. Zehr et al., Eur. Phys. J. A 48, 98 (2012).

    Article  ADS  Google Scholar 

  31. M. Oberle et al., Phys. Lett. B 721, 237 (2013).

    Article  ADS  Google Scholar 

  32. Y. Assafiri et al., Phys. Rev. Lett. 90, 222001 (2003).

    Article  ADS  Google Scholar 

  33. J. Ajaka et al., Phys. Lett. B 651, 108 (2007).

    Article  ADS  Google Scholar 

  34. C. Wu et al., Eur. Phys. J. A 23, 317 (2005).

    Article  ADS  Google Scholar 

  35. CBELSA Collaboration (U. Thoma et al.), Phys. Lett. B 659, 87 (2008).

    Article  ADS  Google Scholar 

  36. A.V. Sarantsev et al., Phys. Lett. B 659, 94 (2008).

    Article  ADS  Google Scholar 

  37. K. Hirose et al., Phys. Lett. B 674, 17 (2009).

    Article  ADS  Google Scholar 

  38. CLAS Collaboration (V.I. Mokeev et al.), Phys. Rev. C 86, 035203 (2012).

    Google Scholar 

  39. L. Tiator, D. Drechsel, S.S. Kamalov, M. Vanderhaeghen, Eur. Phys. J. ST 198, 141 (2011).

    Article  Google Scholar 

  40. I.G. Aznauryan, V.D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012).

    Article  ADS  Google Scholar 

  41. S. Strauch et al., Phys. Rev. Lett. 95, 162003 (2005).

    Article  ADS  Google Scholar 

  42. D. Lüke, P. Söding, Springer Tracts in Modern Physics, Vol. 59 (Springer, Berlin, Heidelberg, 1971) p. 39.

  43. J.A. Gomez Tejedor, F. Cano, E. Oset, Phys. Lett. B 379, 39 (1996).

    Article  ADS  Google Scholar 

  44. J.A. Gomez Tejedor, E. Oset, Nucl. Phys. A 600, 413 (1996).

    Article  ADS  Google Scholar 

  45. M. Hirata, K. Ochi, T. Takaki, Effect of ρ channel in the γN → ππ reactions, HUPD-9722, arXiv:nucl-th/9711031.

  46. J.C. Nacher, E. Oset, M.J. Vicente, L. Roca, Nucl. Phys. A 695, 295 (2001).

    Article  ADS  Google Scholar 

  47. G. Penner, U. Mosel, Phys. Rev. C 66, 055212 (2002).

    Article  ADS  Google Scholar 

  48. M. Hirata, N. Katagiri, T. Takaki, Phys. Rev. C 67, 034601 (2003).

    Article  ADS  Google Scholar 

  49. A. Fix, H. Arenhövel, Eur. Phys. J. A 25, 115 (2005).

    Article  Google Scholar 

  50. A. Fix, H. Arenhövel, Phys. Rev. C 85, 035502 (2012).

    Article  ADS  Google Scholar 

  51. A. Anisovich, E. Klempt, A. Sarantsev, U. Thoma, Eur. Phys. J. A 24, 111 (2005).

    Article  ADS  Google Scholar 

  52. R.L. Workman, M.W. Paris, W.J. Briscoe, I.I. Strakovsky, Phys. Rev. C 86, 015202 (2012).

    Article  ADS  Google Scholar 

  53. Crystal Barrel Collaboration (E. Aker et al.), Nucl. Instrum. Methods A 321, 69 (1992).

    Article  ADS  Google Scholar 

  54. TAPS Collaboration (R. Novotny), IEEE Trans. Nucl. Sci. 38, 379 (1991).

    Article  Google Scholar 

  55. A.R. Gabler et al., Nucl. Instrum. Methods A 346, 168 (1994).

    Article  ADS  Google Scholar 

  56. G. Suft et al., Nucl. Instrum. Methods A 538, 416 (2005).

    Article  ADS  Google Scholar 

  57. CBELSA/TAPS Collaboration (D. Elsner et al.), Eur. Phys. J. A 39, 373 (2009).

    Article  Google Scholar 

  58. F.A. Natter, P. Grabmayr, T. Hehla, R.O. Owens, S. Wunderlich, Nucl. Instrum. Methods B 211, 465 (2003).

    Article  ADS  Google Scholar 

  59. CBELSA Collaboration (H. van Pee et al.), Eur. Phys. J. A 31, 61 (2007).

    Article  Google Scholar 

  60. Particle Data Group Collaboration (K.A. Olive et al.), Chin. Phys. C 38, 090001 (2014).

    Article  Google Scholar 

  61. A. Abashian, N.E. Booth, K.M. Crowe, Phys. Rev. Lett. 5, 258 (1960).

    Article  ADS  Google Scholar 

  62. WASA-at-COSY Collaboration (P. Adlarson et al.), Phys. Rev. Lett. 106, 242302 (2011).

    Article  Google Scholar 

  63. WASA-AT-COSY Collaboration (P. Adlarson et al.), Phys. Lett. B 721, 229 (2013).

    Article  Google Scholar 

  64. K. Schilling, P. Seyboth, G.E. Wolf, Nucl. Phys. B 15, 397 (1970) 18.

    Article  ADS  Google Scholar 

  65. W. Roberts, T. Oed, Phys. Rev. C 71, 055201 (2005).

    Article  ADS  Google Scholar 

  66. E. Klempt, B.C. Metsch, Eur. Phys. J. A 48, 127 (2012).

    Article  ADS  Google Scholar 

  67. E. Klempt, Phys. Rev. C 66, 058201 (2002).

    Article  ADS  Google Scholar 

  68. H. Forkel, E. Klempt, Phys. Lett. B 679, 77 (2009).

    Article  ADS  Google Scholar 

  69. T. Melde, W. Plessas, B. Sengl, Phys. Rev. D 77, 114002 (2008).

    Article  ADS  Google Scholar 

  70. G. Höhler, Handbook Of Pion Nucleon Scattering, in Physics Data, Vol. 12-1 (Fachinform. Zentr. Karlsruhe, 1979).

  71. R.E. Cutkosky, Pion - Nucleon Partial Wave Analysis, in Proceedings of the 4th International Conference on Baryon Resonances, Toronto, Canada, July 14-16, 1980, edited by Nethan Isgur (1980).

  72. R.A. Arndt et al., Phys. Rev. C 74, 045205 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to E. Klempt.

Additional information

Communicated by M. Anselmino

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

The CBELSA/TAPS Collaboration., Sokhoyan, V., Gutz, E. et al. High-statistics study of the reaction γp → p2π0 . Eur. Phys. J. A 51, 95 (2015). https://doi.org/10.1140/epja/i2015-15095-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15095-x

Keywords

Navigation