Skip to main content
Log in

Weakly bound Borromean structures of the exotic 6,8He nuclei through direct reactions on proton

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The data set of the direct reactions induced by the radioactive nuclei 6, 8He can be used as benchmarks to test the validity of the microscopic structure theories. The reactions were analyzed and compared to microscopic calculations including various structure inputs. The interpretation for the structure of He isotopes is compared to the ones proposed via other probes. The consistency of the various data sets and of the reaction analysis using structure models is discussed. The root mean square radii of the matter and neutron densities, and the multipole moments M p, n and B(E2) values are extracted in our approach and compared to the previous experiments and to the theories. From this comparison, we can discuss and point out the microscopic inputs of the models (like correlations, continuum-coupling effects), which are required to reach a consistent understanding for both the radii and the spectroscopy of the nuclei close to the drip-line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Yukawa, Proc. Phys. Math. Soc. Jpn. 17, 48 (1935).

    Google Scholar 

  2. I. Tanihata et al., Phys. Lett. B 160, 380 (1985).

    ADS  Google Scholar 

  3. P.G. Hansen, B. Jonson, Europhys. Lett. 4, 409 (1987).

    ADS  Google Scholar 

  4. I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985).

    ADS  Google Scholar 

  5. I. Tanihata et al., Prog. Part. Nucl. Phys. 35, 505 (1995).

    ADS  Google Scholar 

  6. B. Jonson, Phys. Rep. 389, 1 (2004).

    ADS  Google Scholar 

  7. M. Mayer, J.H.D. Jensen, Elementary Theory of Nuclear Shell Structure (Wiley, New York, 1955).

  8. T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001).

    ADS  Google Scholar 

  9. T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005).

    ADS  Google Scholar 

  10. K. Ikeda, N. Tagikawa, H. Horiuchi, Prog. Theor. Phys. Suppl. Jpn., Extra Number, 464 (1968).

  11. W. von Oertzen, M. Freer, Y. Kanada En’yo, Phys. Rep. 432, 43 (2006).

    ADS  Google Scholar 

  12. W. von Oertzen, Z. Phys. A 357, 355 (1997).

    ADS  Google Scholar 

  13. W. von Oertzen, Phys. Scr. T 88, 83 (2000).

    ADS  Google Scholar 

  14. K. Ikeda, H. Horiuchi, S. Saito, Prog. Theor. Phys. Supplement 68, 1 (1980).

    ADS  Google Scholar 

  15. J. Fujita, H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957).

    MathSciNet  ADS  MATH  Google Scholar 

  16. T. Otsuka et al., Phys. Rev. Lett. 105, 032501 (2010).

    ADS  Google Scholar 

  17. G. Hagen, M. Hjorth-Jensen, G.R. Jansen, R. Machleidt, T. Papenbrock, Phys. Rev. Lett. 108, 242501 (2012).

    ADS  Google Scholar 

  18. J.D. Holt, J. Menendez, A. Schwenk, Eur. Phys. J. A 49, 39 (2013).

    ADS  Google Scholar 

  19. S.C. Pieper, V.R. Pandharipande, R.B. Wiringa, J. Carlson, Phys. Rev. C 64, 014001 (2001).

    ADS  Google Scholar 

  20. R.B. Wiringa, S.C. Pieper, Phys. Rev. Lett. 89, 182501 (2002).

    ADS  Google Scholar 

  21. S.C. Pieper, R.B. Wiringa, J. Carlson, Phys. Rev. C 70, 054325 (2004).

    ADS  Google Scholar 

  22. V. Somà, A. Cipollone, C. Barbieri, P. Navrátil, T. Duguet, Phys. Rev. C 89, 061301 (2014).

    ADS  Google Scholar 

  23. P. Navrátil, V.G. Gueorguiev, J.P. Vary, W.E. Ormand, A. Nogga, Phys. Rev. Lett. 99, 042501 (2007).

    ADS  Google Scholar 

  24. J. Dobaczewski, N. Michel, W. Nazarewicz, M. Ploszajczak, J. Rotureau, Prog. Part. Nucl. Phys. 59, 432 (2007).

    ADS  Google Scholar 

  25. N. Michel, W. Nazarewicz, M. Ploszajczak, K. Bennaceur, Phys. Rev. Lett. 89, 042502 (2002).

    ADS  Google Scholar 

  26. N. Michel, W. Nazarewicz, M. Ploszajczak, J. Okolowicz, Phys. Rev. C 67, 054311 (2003).

    ADS  Google Scholar 

  27. N. Michel, W. Nazarewicz, M. Ploszajczak, Phys. Rev. C 82, 044315 (2010).

    ADS  Google Scholar 

  28. G.R. Satchler, Direct Nuclear Reactions (Clarendon Press, Oxford University Press, 1983).

  29. D.R. Tilley, C.M. Cheves, J.L. Godwin, G.M. Hale, H.M. Hofmann, J.H. Kelley, C.G. Sheu, H.R. Weller, Nucl. Phys. A 708, 3 (2002).

    ADS  Google Scholar 

  30. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).

    ADS  Google Scholar 

  31. G. Audi, M. Wang, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1287 (2012).

    Google Scholar 

  32. G. Audi, F.G. Kondev, M. Wang, B. Pfeiffer, X. Sun, J. Blachot, M. MacCormick, Chin. Phys. C 36, 1157 (2012).

    Google Scholar 

  33. D.R. Tilley, J.H. Kelley, J.L. Godwin, D.J. Millener, J. Purcell, C.G. Sheu, H.R. Weller, Nucl. Phys. A 745, 155 (2004).

    ADS  Google Scholar 

  34. R.J. Glauber, Lectures in Theoretical Physics, Vol. I (Interscience, New York, 1959).

  35. I. Tanihata et al., Phys. Lett. B 206, 592 (1988).

    ADS  Google Scholar 

  36. J.S. Al-Khalili, J. Tostevin, I. Thompson, Phys. Rev. C 54, 1843 (1996).

    ADS  Google Scholar 

  37. M.V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, I.J. Thompson, J.S. Vaagen, Phys. Rep. 231, 151 (1993).

    ADS  Google Scholar 

  38. S.N. Ershov et al., Phys. Rev. C 56, 1483 (1997).

    ADS  Google Scholar 

  39. P.G. Hansen, A.S. Jensen, B. Jonson, Annu. Rev. Nucl. Part. Sci. 45, 591 (1995).

    ADS  Google Scholar 

  40. A.S. Jensen, K. Riisager, Phys. Lett. B 480, 39 (2000).

    ADS  Google Scholar 

  41. A. Krasznahorkay, N. Paar, D. Vretenar, M.N. Harakeh, Phys. Scr. T 154, 014018 (2013).

    ADS  Google Scholar 

  42. B.V. Danilin et al., Phys. Rev. C 55, 577 (1997).

    ADS  Google Scholar 

  43. M.V. Zhukov, A.A. Korsheninnikov, M.H. Smelberg, Phys. Rev. C 50, R1 (1994).

    ADS  Google Scholar 

  44. I. Sick, Phys. Lett. B 116, 212 (1982).

    ADS  Google Scholar 

  45. H. De Vries, C.W. De Jager, C. De Vries, At. Data Nucl. Data Tables 36, 495 (1987).

    ADS  Google Scholar 

  46. M. El-Azab Farid, G.R. Satchler, Nucl. Phys. A 438, 525 (1985).

    ADS  Google Scholar 

  47. G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979).

    ADS  Google Scholar 

  48. I. Tanihata, D. Hirata, T. Kobayashi, S. Shimoura, K. Sugimoto, H. Toki, Phys. Lett. B 289, 261 (1992).

    ADS  Google Scholar 

  49. Y. Ogawa, K. Yabana, T. Suzuki, Nucl. Phys. A 543, 722 (1992).

    ADS  Google Scholar 

  50. Y. Suzuki, T. Kido, Y. Ogawa, K. Yabana, D. Baye, Nucl. Phys. A 567, 957 (1994).

    ADS  Google Scholar 

  51. W. Mittig, Nucl. Phys. A 553, 473c (1993).

    ADS  Google Scholar 

  52. A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. 1 (Benjamin, 1969).

  53. A.M. Bernstein, V.R. Brown, V.A. Madsen, Phys. Rev. Lett. 42, 425 (1979).

    ADS  Google Scholar 

  54. A.M. Bernstein, V.R. Brown, V.A. Madsen, Phys. Lett. B 103, 255 (1981).

    ADS  Google Scholar 

  55. R.C. Barrett, D.F. Jackson, Nuclear Sizes and Structure (Clarendon Press, Oxford, 1977).

  56. The Particle Data Group (W.M. Yao et al.), J. Phys. G 33, 1 (2006).

    ADS  Google Scholar 

  57. The Particle Data Group (K. Nakamura et al.), J. Phys. G 37, 075021 (2010).

    ADS  Google Scholar 

  58. P.E. Hodgson, Nuclear Reactions and Nuclear Structure (Clarendon Press, Oxford, 1971).

  59. J.J. Kelly et al., Phys. Lett. B 169, 157 (1986).

    ADS  Google Scholar 

  60. L.B. Wang et al., Phys. Rev. Lett. 93, 142501 (2004).

    ADS  Google Scholar 

  61. P. Mueller et al., Phys. Rev. Lett. 99, 252501 (2007).

    ADS  Google Scholar 

  62. M. Brodeur et al., Phys. Rev. Lett. 108, 052504 (2012).

    ADS  Google Scholar 

  63. A.A. Korsheninnikov et al., Phys. Lett. B 316, 38 (1993).

    ADS  Google Scholar 

  64. Y. Kanada-En’yo, H. Horiuchi, Prog. Theor. Phys. Suppl. 142, 205 (2001).

    ADS  Google Scholar 

  65. Y. Kanada-En’yo, Phys. Rev. C 76, 044323 (2007).

    ADS  Google Scholar 

  66. Y. Kanada-En’yo, H. Feldmeier, T. Suhara, Phys. Rev. C 84, 054301 (2011).

    ADS  Google Scholar 

  67. T. Neff, H. Feldmeier, Nucl. Phys. A 738, 357 (2004).

    ADS  Google Scholar 

  68. T. Neff, H. Feldmeier, R. Roth, Nucl. Phys. A 752, 321 (2005).

    ADS  Google Scholar 

  69. P. Navrátil, B.R. Barrett, Phys. Rev. C 57, 3119 (1998).

    ADS  Google Scholar 

  70. P. Navrátil, W.E. Ormand, Phys. Rev. C 68, 034305 (2003).

    ADS  Google Scholar 

  71. P. Navrátil, densities from private communication.

  72. H. Sagawa, Phys. Lett. B 286, 7 (1992) Densities from Private communication.

    ADS  Google Scholar 

  73. H. Sagawa, Nucl. Phys. A 543, 575 (1992).

    ADS  Google Scholar 

  74. K. Hagino, H. Sagawa, Phys. Rev. C 72, 044321 (2005).

    ADS  Google Scholar 

  75. K. Hagino, H. Sagawa, T. Nakamura, S. Shimoura, Phys. Rev. C 80, 031301 (2009).

    ADS  Google Scholar 

  76. K. Hagino, N. Takahashi, H. Sagawa, Phys. Rev. C 77, 054317 (2008).

    ADS  Google Scholar 

  77. N.K. Timofeyuk, Phys. Rev. C 69, 034336 (2004).

    ADS  Google Scholar 

  78. B.S. Pudliner et al., Phys. Rev. C 56, 1720 (1997).

    ADS  Google Scholar 

  79. R.B Wiringa, S.C. Pieper, J. Carlson, V.R. Pandharipande, Phys. Rev. C 62, 014001 (2000).

    ADS  Google Scholar 

  80. E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006).

    ADS  Google Scholar 

  81. E. Caurier, P. Navrátil, W.E. Ormand, J.P. Vary, Phys. Rev. C 64, 051301 (2001).

    ADS  Google Scholar 

  82. E. Caurier, P. Navrátil, W.E. Ormand, J.P. Vary, Phys. Rev. C 66, 024314 (2002).

    ADS  Google Scholar 

  83. P. Navrátil, W.E. Ormand, Phys. Rev. Lett. 88, 152502 (2002) and P. Navrátil, private communication (2004).

    ADS  Google Scholar 

  84. E. Caurier, P. Navrátil, Phys. Rev. C 73, 021302 (2006).

    ADS  Google Scholar 

  85. A. Volya, V. Zelevinsky, Phys. Rev. Lett. 94, 052501 (2005).

    ADS  Google Scholar 

  86. G. Hagen, M. Hjorth-Jensen, J.S. Vaagen, Phys. Rev. C 71, 044314 (2005).

    ADS  Google Scholar 

  87. G. Papadimitriou, A.T. Kruppa, N. Michel, W. Nazarewicz, M. Ploszajczak, J. Rotureau, Phys. Rev. C 84, 051304 (2011).

    ADS  Google Scholar 

  88. T. Myo, K. Kato, K. Ikeda, Phys. Rev. C 76, 054309 (2007).

    ADS  Google Scholar 

  89. T. Myo, R. Ando, K. Kato, Phys. Rev. C 80, 014315 (2009).

    ADS  Google Scholar 

  90. T. Myo, R. Ando, K. Kato, Phys. Lett. B 691, 150 (2010).

    ADS  Google Scholar 

  91. T. Myo, A. Umeya, H. Toki, K. Ikeda, Phys. Rev. C 84, 034135 (2011).

    Google Scholar 

  92. S. Baroni, P. Navrátil, S. Quaglioni, Phys. Rev. Lett. 110, 022505 (2013).

    ADS  Google Scholar 

  93. A. Ozawa, T. Suzuki, I. Tanihata, Nucl. Phys. A 693, 32 (2001).

    ADS  Google Scholar 

  94. G.D. Alkhazov et al., Phys. Rev. Lett. 78, 2313 (1997).

    ADS  Google Scholar 

  95. J.S. Al-Khalili, J.A. Tostevin, Phys. Rev. Lett. 76, 3903 (1996).

    ADS  Google Scholar 

  96. J.A. Tostevin, J.S. Al-Khalili, Nucl. Phys. A 616, 418c (1997).

    ADS  Google Scholar 

  97. J.S. Al-Khalili, J.A. Tostevin, Phys. Rev. C 57, 1846 (1998).

    ADS  Google Scholar 

  98. J. Wurzer, H.M. Hofmann, Phys. Rev. C 55, 688 (1997).

    ADS  Google Scholar 

  99. P. Descouvemont, C. Daniel, D. Baye, Phys. Rev. C 67, 044309 (2003) and references therein.

    ADS  Google Scholar 

  100. A. Adahchour, P. Descouvemont, Phys. Lett. B 639, 447 (2006).

    ADS  Google Scholar 

  101. K. Bennaceur, J. Dobaczewski, M. Ploszajczak, Phys. Lett. B 496, 154 (2000).

    ADS  Google Scholar 

  102. A. Ong, J.C. Berengut, V.V. Flambaum, Phys. Rev. C 82, 014320 (2010).

    ADS  Google Scholar 

  103. F.E. Wietfeldt, M. Huber, T.C. Black, H. Kaiser, M. Arif, D.L. Jacobson, S.A. Werner, Physica B 385, 1374 (2006).

    ADS  Google Scholar 

  104. J.L. Friar, J. Martorell, D.W.L. Sprung, Phys. Rev. A 56, 4579 (1997).

    ADS  Google Scholar 

  105. R. Pohl et al., Nature 466, 213 (2010).

    ADS  Google Scholar 

  106. E. Borie, G.A. Rinker, Phys. Rev. A 18, 324 (1978).

    ADS  Google Scholar 

  107. I. Sick, Phys. Rev. C 77, 041302 (2008).

    ADS  Google Scholar 

  108. The MUST Collaboration (Y. Blumenfeld et al.), Nucl. Instrum. Methods A 421, 471 (1999).

    Google Scholar 

  109. The MUST2 Collaboration (E.C. Pollacco et al.), Eur. Phys. J. A 25, 287 (2005).

    Google Scholar 

  110. W.N. Catford et al., Nucl. Instrum. Methods A 614, 439 (2010).

    ADS  Google Scholar 

  111. M.S. Wallace et al., Nucl. Instrum. Methods A 583, 302 (2007).

    ADS  Google Scholar 

  112. S. Ottini et al., Nucl. Instrum. Methods A 431, 476 (1999).

    ADS  Google Scholar 

  113. A. Lagoyannis et al., Phys. Lett. B 518, 27 (2001).

    ADS  Google Scholar 

  114. L. Giot et al., Phys. Rev. C. 71, 064311 (2005).

    ADS  Google Scholar 

  115. F. Skaza, V. Lapoux, N. Keeley, N. Alamanos, E.C. Pollacco, F. Auger, A. Drouart, A. Gillibert, D. Beaumel, E. Becheva, Y. Blumenfeld, F. Delaunay, L. Giot, K.W. Kemper, L. Nalpas, A. Obertelli, A. Pakou, R. Raabe, P. Roussel-Chomaz, J.-L. Sida, J.-A. Scarpaci, S. Stepantsov, R. Wolski, Phys. Rev. C 73, 044301 (2006).

    ADS  Google Scholar 

  116. F. Skaza, N. Keeley, V. Lapoux, N. Alamanos, F. Auger, D. Beaumel, E. Becheva, Y. Blumenfeld, F. Delaunay, A. Drouart, A. Gillibert, L. Giot, K.W. Kemper, R.S. Mackintosh, L. Nalpas, A. Pakou, E.C. Pollacco, R. Raabe, P. Roussel-Chomaz, J.-A. Scarpaci, J.-L. Sida, S. Stepantsov, R. Wolski, Phys. Lett. B 619, 82 (2005).

    ADS  Google Scholar 

  117. N. Keeley, F. Skaza, V. Lapoux, N. Alamanos, F. Auger, D. Beaumel, E. Becheva, Y. Blumenfeld, F. Delaunay, A. Drouart, A. Gillibert, L. Giot, K.W. Kemper, L. Nalpas, A. Pakou, E.C. Pollacco, R. Raabe, P. Roussel-Chomaz, K. Rusek, J.-A. Scarpaci, J.-L. Sida, S. Stepantsov, R. Wolski, Phys. Lett. B 646, 222 (2007).

    ADS  Google Scholar 

  118. F. Skaza, V. Lapoux, N. Keeley, N. Alamanos, F. Auger, D. Beaumel, E. Becheva, Y. Blumenfeld, F. Delaunay, A. Drouart, A. Gillibert, L. Giot, E. Khan, L. Nalpas, A. Pakou, E. Pollacco, R. Raabe, P. Roussel-Chomaz, K. Rusek, J.-A. Scarpaci, J.-L. Sida, S. Stepantsov, R. Wolski, Nucl. Phys. A 788, 260c (2007) article in preparation, for the detailed .

    ADS  Google Scholar 

  119. X. Mougeot, V. Lapoux, W. Mittig, N. Alamanos, F. Auger, B. Avez, D. Beaumel, Y. Blumenfeld, R. Dayras, A. Drouart, C. Force, L. Gaudefroy, A. Gillibert, J. Guillot, H. Iwasaki, T. Al Kalanee, N. Keeley, L. Nalpas, E.C. Pollacco, T. Roger, P. Roussel-Chomaz, D. Suzuki, K.W. Kemper, T.J. Mertzimekis, A. Pakou, K. Rusek, J.-A. Scarpaci, C. Simenel, I. Strojek, R. Wolski, Phys. Lett. B 718, 441 (2012).

    ADS  Google Scholar 

  120. R.L. Varner, W.J. Thompson, T.L. McAbee, E.J. Ludwig, T.B. Clegg, Phys. Rep. 201, 57 (1991).

    ADS  Google Scholar 

  121. J.R. Beene, D.J. Horen, G.R. Satchler, Nucl. Phys. A 596, 137 (1996).

    ADS  Google Scholar 

  122. M. Watson, Phys. Rev. 105, 1338 (1957).

    ADS  Google Scholar 

  123. A.K. Kerman, H. McManus, R.M. Thaler, Ann. Phys. (NY) 8, 551 (1959).

    ADS  Google Scholar 

  124. F.A. Brieva, J.R. Rook, Nucl. Phys. A 281, 317 (1972).

    Google Scholar 

  125. J.P. Jeukenne, A. Lejeune, C. Mahaux, Phys. Rev. C 15, 10 (1977).

    ADS  Google Scholar 

  126. J.P. Jeukenne, A. Lejeune, C. Mahaux, Phys. Rev. C 16, 80 (1977).

    ADS  Google Scholar 

  127. J.S. Al-Khalili, F.M. Nunes, J. Phys. G: Nucl. Part. Phys. 29, R89 (2003).

    ADS  Google Scholar 

  128. J.S. Petler et al., Phys. Rev. C 32, 673 (1985).

    ADS  Google Scholar 

  129. S. Mellema, R. Finlay, F. Dietrich, F. Petrovich, Phys. Rev. C 28, 2267 (1983).

    ADS  Google Scholar 

  130. T. Tamura, W.R. Coker, R. Rybicki, Comput. Phys. Commun. 2, 94 (1971).

    ADS  Google Scholar 

  131. J. Raynal, Phys. Rev. C 23, 2571 (1981).

    ADS  Google Scholar 

  132. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988).

    ADS  Google Scholar 

  133. N. Alamanos, F. Auger, B.A. Brown, A. Pakou, J. Phys. G 24, 1541 (1998).

    ADS  Google Scholar 

  134. E. Khan et al., Phys. Lett. B 490, 45 (2000).

    ADS  Google Scholar 

  135. C. Jouanne, V. Lapoux, F. Auger, N. Alamanos, A. Drouart, A. Gillibert, G. Lobo, A. Musumarra, L. Nalpas, E. Pollacco, J.-L. Sida, M. Trotta, Y. Blumenfeld, E. Khan, T. Suomijärvi, T. Zerguerras, P. Roussel-Chomaz, H. Savajols, A. Lagoyannis, A. Pakou, Phys. Rev. C 72, 014308 (2005).

    ADS  Google Scholar 

  136. V. Lapoux, N. Alamanos, F. Auger, V. Fékou-Youmbi, A. Gillibert, F. Marie, S. Ottini-Hustache, J.-L. Sida, D.T. Khoa, Y. Blumenfeld, F. Maréchal, J.-A. Scarpaci, T. Suomijarvi, J.H. Kelley, J.-M. Casandjian, M. Chartier, M.D. Cortina-Gil, M. Mac Cormick, W. Mittig, F. de Oliveira Santos, A.N. Ostrowski, P. Roussel-Chomaz, K.W. Kemper, N. Orr, J.S. Winfield, Phys. Rev. C 66, 034608 (2002).

    ADS  Google Scholar 

  137. V. Lapoux et al., Phys. Lett. B 517, 18 (2001).

    ADS  Google Scholar 

  138. M.E. Brandan, G.R. Satchler, Phys. Rep. 285, 143 (1997).

    ADS  Google Scholar 

  139. H. Feshbach, Ann. Phys. 5, 357 (1958).

    MathSciNet  ADS  MATH  Google Scholar 

  140. H. Feshbach, Theoretical Nuclear Physics (Wiley, New York, 1992).

  141. Y. Sakuragi et al., Prog. Theo. Phys. 70, 1047 (1983).

    ADS  Google Scholar 

  142. Y. Sakuragi, Phys. Rev. C 35, 2161 (1987).

    ADS  Google Scholar 

  143. A.A. Korsheninnikov et al., Nucl. Phys. A 617, 45 (1997).

    ADS  Google Scholar 

  144. R. Wolski et al., Phys. Lett. B 467, 8 (1999).

    ADS  Google Scholar 

  145. S.V. Stepantsov et al., Phys. Lett. B 542, 35 (2002).

    ADS  Google Scholar 

  146. V. Lapoux et al., Phys. Lett. B 658, 198 (2008).

    ADS  Google Scholar 

  147. N. Keeley, V. Lapoux, Phys. Rev. C 77, 014605 (2008).

    ADS  Google Scholar 

  148. P. Navrátil, B.R. Barrett, Phys. Rev. C 54, 2986 (1996).

    ADS  Google Scholar 

  149. S. Karataglidis et al., Phys. Rev. C 61, 024319 (2000).

    ADS  Google Scholar 

  150. T. Aumann et al., Phys. Rev. C 59, 1252 (1999).

    ADS  Google Scholar 

  151. K. Rusek, K.W. Kemper, R. Wolski, Phys. Rev. C 64, 044602 (2001).

    ADS  Google Scholar 

  152. A.A. Korsheninnikov et al., Phys. Rev. Lett. 82, 3581 (1999).

    ADS  Google Scholar 

  153. A.A. Korsheninnikov et al., Phys. Rev. Lett. 90, 082501 (2003).

    ADS  Google Scholar 

  154. R.S. Mackintosh, Scholarpedia 7, 12032 (2012) DOI:10.4249/scholarpedia.12032 and references therein.

    ADS  Google Scholar 

  155. S. Raman, C.W. Nestor, Jr., P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).

    ADS  Google Scholar 

  156. J. Jänecke et al., Phys. Rev. C 54, 1070 (1996).

    ADS  Google Scholar 

  157. S. Nakayama et al., Phys. Rev. Lett. 85, 262 (2000).

    ADS  Google Scholar 

  158. H. Akimune et al., Phys. Rev. C 67, 051302 (2003).

    ADS  Google Scholar 

  159. T. Nakamura et al., Phys. Lett. B 493, 209 (2000).

    ADS  Google Scholar 

  160. T. Nakamura et al., Eur. Phys. J. A 13, 33 (2002).

    ADS  Google Scholar 

  161. W. von Oertzen, Nucl. Phys. A 588, 129c (1995).

    ADS  Google Scholar 

  162. H.G. Bohlen et al., Prog. Part. Nucl. Phys. 42, 17 (1999).

    ADS  Google Scholar 

  163. T. Nilsson et al., Nucl. Phys. A 583, 795 (1995).

    MathSciNet  ADS  Google Scholar 

  164. K. Markenroth et al., Nucl. Phys. A 679, 462 (2001).

    ADS  Google Scholar 

  165. C. Romero-Redondo, S. Quaglioni, P. Navrátil, G. Hupin, Phys. Rev. Lett. 113, 032503 (2014).

    ADS  Google Scholar 

  166. H. Sagawa, private communication.

  167. G.R. Jansen, M. Hjorth-Jensen, G. Hagen, T. Papenbrock, Phys. Rev. C 83, 054306 (2011).

    ADS  Google Scholar 

  168. G.F. Bertsch, H. Esbensen, Ann. Phys. (NY) 209, 327 (1991).

    ADS  Google Scholar 

  169. Y. Kikuchi, K. Kato, T. Myo, M. Takashina, K. Ikeda, Phys. Rev. C 81, 044308 (2010).

    ADS  Google Scholar 

  170. K. Hagino, H. Sagawa, Phys. Rev. C 76, 047302 (2007).

    ADS  Google Scholar 

  171. N. Keeley, K.W. Kemper, K. Rusek, Eur. Phys. J. A 50, 145 (2014).

    ADS  Google Scholar 

  172. T. Suda, M. Wakasugi, Prog. Part. Nucl. Phys. 55, 417 (2005).

    ADS  Google Scholar 

  173. A.N. Antonov et al., Nucl. Instrum. Methods A 637, 60 (2011).

    ADS  Google Scholar 

  174. E. Hiyama, T. Yamada, Prog. Part. Nucl. Phys. 63, 339 (2009).

    ADS  Google Scholar 

  175. E. Hiyama, M. Isaka, M. Kamimura, T. Myo, T. Motoba, Phys. Rev. C 91, 054316 (2015).

    ADS  Google Scholar 

  176. T.R. Saito et al., Int. J. Mod. Phys. E 19, 2656 (2010) DOI:10.1142/S021830131001723X.

    ADS  Google Scholar 

  177. H.-W. Hammer, A. Nogga, A. Schwenk, Rev. Mod. Phys. 85, 197 (2013).

    ADS  Google Scholar 

  178. E. Epelbaum, H.-W. Hammer, Ulf-G. Meissner, Rev. Mod. Phys. 81, 1773 (2009).

    ADS  Google Scholar 

  179. S. Bacca, A. Schwenk, G. Hagen, T. Papenbrock, Eur. Phys. J. A 42, 553 (2009).

    ADS  Google Scholar 

  180. S. Bacca, N. Barnea, A. Schwenk, Phys. Rev. C 86, 034321 (2012).

    ADS  Google Scholar 

  181. G. Hagen, N. Michel, Phys. Rev. C 86, 021602 (2012).

    ADS  Google Scholar 

  182. M.H. Mahzoon, R.J. Charity, W.H. Dickhoff, H. Dussan, S.J. Waldecker, Phys. Rev. Lett. 112, 162503 (2014).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérie Lapoux.

Additional information

Communicated by U.-G. Meißner

Dr. Hab. Valérie Lapoux is a nuclear physicist working at CEA Saclay in the field of the direct nuclear reactions induced by radioactive beams. Most of her experimental works have been done since 2001 at the GANIL facility using the MUST2 array (must2.cea.fr) and also, since 2010, at RIKEN. Her works are focused on the interpretations of the reaction observables of the exotic unstable nuclei, in collaboration with theorists gathered in the framework of the ESNT laboratory (esnt.cea.fr), to obtain insight onto the nuclear forces at play to produce the fascinating structure properties of the atomic nucleus.

Dr. Nicolas Alamanos is Research Director at CEA Saclay. He has been Director of the Saclay Nuclear Physics Division and President of GANIL’s Scientific Council. He is currently Deputy Director of the Institute of Research into the Fundamental Laws of the Universe (IRFU). He is a member of GANIL’s Directorate committee, of GANIL/SPIRAL2 Scientific Council, Chairperson of the International Advisory Committee of the Institute of Nuclear and Particle Physics of “Demokritos”, Scientific counselor of the European program “CEA-Euro talents”, Secretary of the Joint (DSM-IN2P3) committee CCT-PNHE, Chairperson of the governing board of the European project “CHANDA”, CEA representative member of (NuPECC). He is a member or evaluator of many committees—ANR (France), ARISTEIA (GRECE), FRS-FNRS (Belgium), STFC (England). He is a Member of many bilateral coordination committees, various steering, or In-Kind committees. From January 2013 he has been nominated Editor-in-Chief of the European Physical Journal A for the experimental physics section and Managing Reviews Editor for the experimental physics section. He is also the Editor of the Scholarpedia Encyclopedia of Nuclear Physics. Since 2009 He is a member of the GSI-GENCO community.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapoux, V., Alamanos, N. Weakly bound Borromean structures of the exotic 6,8He nuclei through direct reactions on proton. Eur. Phys. J. A 51, 91 (2015). https://doi.org/10.1140/epja/i2015-15091-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15091-2

Keywords

Navigation