Skip to main content
Log in

Microscopic description of quadrupole collectivity in neutron-rich nuclei across the N = 126 shell closure

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The quadrupole collectivity in Nd, Sm, Gd, Dy, Er, Yb, Hf and W nuclei with neutron numbers 122 ≤ N ≤ 156 is studied, both at the mean field level and beyond, using the Gogny energy density functional. Besides the robustness of the N = 126 neutron shell closure, it is shown that the onset of static deformations in those isotopic chains with increasing neutron number leads to an enhanced stability and further extends the corresponding two-neutron drip lines far beyond what could be expected from spherical calculations. Independence of the mean-field predictions with respect to the particular version of the Gogny energy density functional employed is demonstrated by comparing results based on the D1S and D1M parameter sets. Correlations beyond mean field are taken into account in the framework of the angular momentum projected generator coordinate method calculation. It is shown that N = 126 remains a robust neutron magic number when dynamical effects are included. The analysis of the collective wave functions, average deformations and excitation energies indicate that, with increasing neutron number, the zero-point quantum corrections lead to dominant prolate configurations in the 0 +1 , 0 +2 , 2 +1 and 2 +2 states of the studied nuclei. Moreover, those dynamical deformation effects provide an enhanced stability that further supports the mean-field predictions, corroborating a shift of the r-process path to higher neutron numbers. Beyond mean-field calculations provide a smaller shell gap at N = 126 than the mean-field one in good agreement with previous theoretical studies. However, the shell gap still remains strong enough in the two-neutron drip lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Sorlin, M.-G. Porquet, Prog. Part. Phys. 61, 602 (2008).

    Article  ADS  Google Scholar 

  2. S. Michimasa et al., Phys. Rev. C 89, 054307 (2014).

    Article  ADS  Google Scholar 

  3. C. Thibault et al., Phys. Rev. C 12, 644 (1975).

    Article  ADS  Google Scholar 

  4. T. Motobayashi et al., Phys. Lett. B 346, 9 (1995).

    Article  ADS  Google Scholar 

  5. C. Détraz et al., Phys. Rev. C 19, 164 (1979).

    Article  ADS  Google Scholar 

  6. D. Guillemaud-Mueller et al., Nucl. Phys. A 426, 37 (1984).

    Article  ADS  Google Scholar 

  7. B. Bastin et al., Phys. Rev. Lett. 99, 022503 (2007).

    Article  ADS  Google Scholar 

  8. S. Takeuchi et al., Phys. Rev. Lett. 109, 182501 (2012).

    Article  ADS  Google Scholar 

  9. E. Caurier, F. Nowacki, A. Poves, J. Retamosa, Phys. Rev. C 58, 2033 (1998).

    Article  ADS  Google Scholar 

  10. Y. Utsuno, T. Otsuka, T. Mizusaki, M. Honma, Phys. Rev. C 60, 054315 (1999).

    Article  ADS  Google Scholar 

  11. R. Rodríguez-Guzmán, J.L. Egido, L.M. Robledo, Nucl. Phys. A 709, 201 (2002).

    Article  ADS  Google Scholar 

  12. R. Rodríguez-Guzmán, J.L. Egido, L.M. Robledo, Phys. Lett. B 474, 15 (2000).

    Article  ADS  Google Scholar 

  13. R.R. Rodríguez-Guzmán, J.L. Egido, L.M. Robledo, Phys. Rev. C 62, 054319 (2000).

    Article  ADS  Google Scholar 

  14. R. Rodríguez-Guzmán, J.L. Egido, L.M. Robledo, Eur. Phys. J. A 17, 37 (2003).

    Article  ADS  Google Scholar 

  15. S. Péru, M. Girod, J.F. Berger, Eur. Phys. J. A 9, 35 (2000).

    Article  ADS  Google Scholar 

  16. G.A. Lalazissis, A.R. Farhan, M.M. Sharma, Nucl. Phys. A 628, 221 (1998).

    Article  ADS  Google Scholar 

  17. J. Terasaki, H. Flocard, P.-H. Heenen, P. Bonche, Nucl. Phys. A 621, 706 (1997).

    Article  ADS  Google Scholar 

  18. M.V. Stoitsov, J. Dobaczewski, P. Ring, S. Pittel, Phys. Rev. C 61, 034311 (2000).

    Article  ADS  Google Scholar 

  19. J. Retamosa, E. Caurier, F. Nowacki, A. Poves, Phys. Rev. C 65, 1266 (1997).

    Article  ADS  Google Scholar 

  20. R. Rodríguez-Guzmán, J.L. Egido, L.M. Robledo, Phys. Rev. C 65, 024304 (2002).

    Article  ADS  Google Scholar 

  21. T.R. Werner, J.A. Sheikh, W. Nazarewicz, M.R. Strayer, A.S. Umar, M. Misu, Phys. Lett. B 335, 259 (1994).

    Article  ADS  Google Scholar 

  22. D. Hirata, K. Sumiyoshi, B.V. Carlson, H. Toki, I. Tanihata, Nucl. Phys. A 609, 131 (1996).

    Article  ADS  Google Scholar 

  23. G.A. Lalazissis, D. Vretenar, P. Ring, M. Stoitsov, L.M. Robledo, Phys. Rev. C 60, 014310 (1999).

    Article  ADS  Google Scholar 

  24. M. Lewitowicz et al., Nucl. Phys. A 496, 477 (1989).

    Article  ADS  Google Scholar 

  25. O. Sorlin et al., Phys. Rev. C 47, 2941 (1993).

    Article  ADS  Google Scholar 

  26. H. Scheit et al., Phys. Rev. Lett. 77, 3967 (1996).

    Article  ADS  Google Scholar 

  27. T. Glasmacher et al., Phys. Lett. B 395, 163 (1997).

    Article  ADS  Google Scholar 

  28. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980).

  29. S. Péru, M. Martini, Eur. Phys. J. A 50, 88 (2014).

    Article  ADS  Google Scholar 

  30. T. Nitsić, D. Vretenar, P. Ring, Phys. Rev. C 73, 034308 (2006).

    Article  ADS  Google Scholar 

  31. T. Nitsić, D. Vretenar, P. Ring, Phys. Rev. C 74, 064309 (2006).

    Article  ADS  Google Scholar 

  32. R.R. Rodríguez-Guzmán, J.L. Egido, L.M. Robledo, Phys. Rev. C 69, 054319 (2004).

    Article  ADS  Google Scholar 

  33. T. Duguet, M. Bender, P. Bonche, P.-H. Heenen, Phys. Lett. B 559, 201 (2003).

    Article  ADS  Google Scholar 

  34. M. Bender, P. Bonche, T. Duguet, P.-H. Heenen, Phys. Rev. C 69, 064303 (2004).

    Article  ADS  Google Scholar 

  35. B. Pfeiffer, K.L. Kratz, F.K. Thielemann, W.B. Walters, Nucl. Phys. A 693, 282 (2001).

    Article  ADS  Google Scholar 

  36. K.L. Kratz, J.P. Bitouzet, F.K. Thielemann, P. Möller, B. Pfeiffer, Astrophys. J. 403, 216 (1993).

    Article  ADS  Google Scholar 

  37. M. Arnould, S. Goriely, K. Takahashi, Phys. Rep. 450, 97 (2007).

    Article  ADS  Google Scholar 

  38. E.M. Burbidge, G.R. Burbidge, A.A. Fowler, F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).

    Article  ADS  Google Scholar 

  39. S. Wanajo, S. Goriely, M. Samyn, N. Itoh, Astrophys. J. 606, 1057 (2004).

    Article  ADS  Google Scholar 

  40. J. Dobaczewski, I. Hamamoto, W. Nazarewicz, J.A. Sheikh, Phys. Rev. Lett. 72, 981 (1994).

    Article  ADS  Google Scholar 

  41. B. Chen, J. Dobaczewski, K.L. Kratz, K. Langanke, B. Pfeiffer, F.-K. Thielemann, P. Vogel, Phys. Lett. B 355, 37 (1995).

    Article  ADS  Google Scholar 

  42. M.M. Sharma, G.A. Lalazissis, W. Hillebrandt, P. Ring, Phys. Rev. Lett. 72, 1431 (1994).

    Article  ADS  Google Scholar 

  43. M.M. Sharma, G.A. Lalazissis, W. Hillebrandt, P. Ring, Phys. Rev. Lett. 73, 1870 (1994).

    Article  ADS  Google Scholar 

  44. M.M. Sharma, A.R. Farhan, Phys. Rev. C 65, 044301 (2002).

    Article  ADS  Google Scholar 

  45. B. Pfeiffer, K.L. Kratz, F.K. Thielemann, W.B. Walters, Z. Phys. A 357, 235 (1997).

    Article  ADS  Google Scholar 

  46. J.M. Pearson, R.C. Nayak, S. Goriely, Phys. Lett. B 387, 455 (1996).

    Article  ADS  Google Scholar 

  47. the ISOLDE Collaboration (I. Dillmann, K.-L. Kratz, A. Wöhr, O. Arndt, B.A. Brown, P. Hoff, M. Hjorth-Jensen, U. Köster, A.N. Ostrowski, B. Pfeiffer, D. Seweryniak, J. Shergur, W.B. Walters), Phys. Rev. Lett. 91, 162503 (2003).

    Article  ADS  Google Scholar 

  48. T.R. Rodríguez, J.L. Egido, A. Jungclaus, Phys. Lett. B 668, 410 (2008).

    Article  ADS  Google Scholar 

  49. A. Jungclaus, L. Cáceres, M. Górska, M. Pfützner, S. Pietri, E. Werner-Malento, H. Grawe, K. Langanke, G. Martínez-Pinedo, F. Nowacki, J.J. Cuenca-García, D. Rudolph, Z. Podolyák, P.H. Reagan, P. Detistov, S. Lalkovski, V. Modamio, J. Walker, P. Bednarczyk, P. Doornenbal, H. Geissel, J. Gerl, J. Grebosz, I. Kojouharov, N. Kurz, W. Prokopowicz, H. Schaffner, H.J. Wollersheim, K. Andgren, J. Benlliure, G. Benzoni, A.M. Bruce, E. Casajeros, B. Cederwall, F.C.L. Crespi, B. Hadinia, M. Hellström, R. Hoischen, G. Ilie, J. Jolie, A. Khaplanov, M. Kmiecik, R. Kumar, A. Maj, S. Mandal, F. Montes, S. Myalski, G.S. Simpson, S.J. Steer, S. Tashenov, O. Wieland, Phys. Rev. Lett. 99, 132501 (2007).

    Article  ADS  Google Scholar 

  50. M. Górska, L. Cáceres, H. Grawe, M. Pfützner, A. Jungclaus, E. Werner-Malento, Z. Podolyák, P.H. Reagan, D. Rudolph, P. Detistov, S. Lalkovski, V. Modamio, J. Walker, T. Beck, P. Bednarczyk, P. Doornenbal, H. Geissel, J. Gerl, J. Grebosz, R. Hoischen, I. Kojouharov, N. Kurz, W. Prokopowicz, H. Schaffner, H. Weick, H.J. Wollersheim, K. Andgren, J. Benlliure, G. Benzoni, A.M. Bruce, E. Casajeros, B. Cederwall, F.C.L. Crespi, B. Hadinia, M. Hellström, G. Ilie, A. Khaplanov, M. Kmiecik, R. Kumar, A. Maj, S. Mandal, F. Montes, S. Myalski, G.S. Simpson, S.J. Steer, S. Tashenov, Zs. Dombrádi, R. Reiter, D. Sohler, Phys. Lett. B 672, 313 (2009).

    Article  ADS  Google Scholar 

  51. S. Goriely, S. Hilaire, M. Girod, S. Péru, Phys. Rev. Lett. 102, 242501 (2009).

    Article  ADS  Google Scholar 

  52. J. Dechargé, D. Gogny, Phys. Rev. C 21, 1568 (1980).

    Article  ADS  Google Scholar 

  53. J.F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 428, 23c (1984).

    Article  ADS  Google Scholar 

  54. P. Bonche, J. Dobaczewski, H. Flocard, P.-H. Heenen, J. Meyer, Nucl. Phys. A 510, 466 (1990).

    Article  ADS  Google Scholar 

  55. K.W. Schmid, F. Grümmer, A. Faessler, Phys. Rev. C 29, 291 (1984).

    Article  ADS  Google Scholar 

  56. K.W. Schmid, F. Grümmer, A. Faessler, Phys. Rev. C 29, 308 (1984).

    Article  ADS  Google Scholar 

  57. K. Hara, A. Hayashi, P. Ring, Nucl. Phys. A 385, 14 (1982).

    Article  ADS  Google Scholar 

  58. K. Hara, Y. Sun, Int. J. Mod. Phys. E 4, 637 (1995).

    Article  ADS  Google Scholar 

  59. L.M. Robledo, Phys. Rev. C 50, 2874 (1994).

    Article  ADS  Google Scholar 

  60. J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.F. Berger, C.R. Chinn, J. Dechargé, Phys. Rev. C 53, 2809 (1996).

    Article  ADS  Google Scholar 

  61. J. Dobaczewski, H. Flocard, J. Treiner, Nucl. Phys. A 422, 103 (1994).

    Article  ADS  Google Scholar 

  62. L.M. Robledo, G.F. Bertsch, Phys. Rev. C 84, 014312 (2011).

    Article  ADS  Google Scholar 

  63. R. Rodríguez-Guzmán, L.M. Robledo, P. Sarriguren, J.E. García-Ramos, Phys. Rev. C 81, 024310 (2010).

    Article  ADS  Google Scholar 

  64. P.A. Butler, W. Nazarewicz, Rev. Mod. Phys. 68, 349 (1996).

    Article  ADS  Google Scholar 

  65. L.M. Robledo, M. Baldo, P. Schuck, X. Vinas, Phys. Rev. C 81, 034315 (2010).

    Article  ADS  Google Scholar 

  66. L.M. Robledo, R. Rodríguez-Guzmán, P. Sarriguren, J. Phys. G: Nucl. Part. Phys. 36, 115104 (2009).

    Article  ADS  Google Scholar 

  67. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princenton University Press, Princenton, 1957).

  68. D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1102 (1953).

    Article  MATH  ADS  Google Scholar 

  69. M. Bender, P.-H. Heenen, P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

    Article  ADS  Google Scholar 

  70. M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. Lett. 94, 102503 (2005).

    Article  ADS  Google Scholar 

  71. L.M. Robledo, Int. J. Mod. Phys. E 16, 337 (2007).

    Article  ADS  Google Scholar 

  72. J.L. Egido, L.M. Robledo, Nucl. Phys. A 524, 65 (1991).

    Article  ADS  Google Scholar 

  73. L.M. Robledo, R.R. Rodríguez-Guzman, P. Sarriguren, Phys. Rev. C 78, 034314 (2008).

    Article  ADS  Google Scholar 

  74. A.R. Farhan, M.M. Sharma, Phys. Rev. C 73, 045803 (2006).

    Article  ADS  Google Scholar 

  75. M.M. Sharma, A.A. Saldanha, Kuwait J. Sci. Engg. 38, 39 (2011).

    Google Scholar 

  76. A.R. Farhan, M.M. Sharma, Enhanced stability beyond the neutron dripline near the third peak of r-process nucleosynthesis in the deformed relativistic Hartree-Bogoliubov theory, to be published.

  77. S. Goriely, M. Samyn, J.M. Pearson, Phys. Rev. C 75, 064312 (2007).

    Article  ADS  Google Scholar 

  78. P. Möller, J. Nix, W. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1994).

    Article  Google Scholar 

  79. S. Hilaire, M. Girod, Eur. Phys. J. A 33, 237 (2007).

    Article  ADS  Google Scholar 

  80. T.R. Rodríguez, A. Arzhanov, G. Martínez-Pinedo, Phys. Rev C 91, 044315 (2015).

    Article  ADS  Google Scholar 

  81. R. Rodríguez-Guzmán, L.M. Robledo, Phys. Rev. C 89, 054310 (2014).

    Article  ADS  Google Scholar 

  82. R. Rodríguez-Guzmán, L.M. Robledo, Eur. Phys. J. A 50, 142 (2014).

    Article  ADS  Google Scholar 

  83. F. Chappert, M. Girod, S. Hilaire, Phys. Lett. B 668, 420 (2008).

    Article  ADS  Google Scholar 

  84. M. Bender, G.F. Bertsch, P.-H. Heenen, Phys. Rev. C 73, 034322 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rodríguez-Guzmán.

Additional information

Communicated by F. Nunes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Guzmán, R., Robledo, L.M. & Sharma, M.M. Microscopic description of quadrupole collectivity in neutron-rich nuclei across the N = 126 shell closure. Eur. Phys. J. A 51, 73 (2015). https://doi.org/10.1140/epja/i2015-15073-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15073-4

Keywords

Navigation