Skip to main content
Log in

Toward the drip lines and the superheavy island of stability with the Super Separator Spectrometer S3

  • Special Article - Tools for Experiment and Theory
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The Super Separator Spectrometer S 3 is a major experimental system developed for SPIRAL2. It has been designed for physics experiments with very low cross sections by taking full advantage of the very high intensity stable beams to be produced by LINAG, the superconducting linear accelerator at GANIL. These intensities will open new opportunities in several physics domains using fusion evaporation reactions, principally: super-heavy and very heavy element properties, spectroscopy at and beyond the dripline, and isomer and ground-state properties. The common feature of these experiments is the requirement to separate very rare events from intense backgrounds. S 3 accomplishes this with a large acceptance, a high background rejection efficiency, and a physical mass separation. This article will present the technical specifications and optical constraints needed to achieve these physical goals. The optical layout of the spectrometer will be presented, focusing on technical elements of the target system, the superconducting multipole magnets used to correct high-order optical aberrations, the electric and magnetic dipoles, and the open multipole triplet used for primary beam rejection. The expected system performance will be presented for three experimental cases using 3 specific optical modes of the spectrometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Origin of the SPIRAL2 Project, http://pro.ganil-spiral2.eu/spiral2/origin-of-spiral2.

  2. The Scientific Objectives of the SPIRAL2 Project, Livre Blanc SPIRAL 2, GANIL (2004) http://pro.ganil-spiral2.eu/spiral2/what-is-spiral2/physics-case/at_download/file.

  3. The SPIRAL 2 Project ADP Report, GANIL (2005) http://pro.ganil-spiral2.eu/spiral2/what-is-spiral2/apd.

  4. High Intensity beam at GANIL and future opportunities: LINAG, Rapport, GANIL R 01 02 (2001) http://pro.ganil-spiral2.eu/spiral2/origin-of-spiral2/high-intensity-beams-at-ganil-and-future-opportunities-linag/at_download/file.

  5. LINAG Phase I, Technical Report, Version 1.3, GANIL (2002) http://hal.in2p3.fr/docs/00/01/61/18/PDF/democrite-00012510.pdf.

  6. R. Ferdinand, Progress of construction and installation of the SPIRAL2 accelerator, in IPAC 13 - The 4th International Particle Accelerator Conference, Shanghai, China, 2013 http://hal.archives-ouvertes.fr/docs/00/82/32/97/PDF/thpwo002.pdf.

  7. D. Uriot, Configuration de base le LINAG supraconducteur V1.0, EDMS I-010910/1 v.1 (2007) (Contact person: antoine.drouart@cea.fr).

  8. Description de l’accélérateur de SPIRAL2 pour aide au RPRS, EDMS I-015272 v.1 (Contact person: antoine.drouart@cea.fr) https://edms.in2p3.fr.

  9. P. Bertrand, Liste des paramètres SPIRAL2, EDMS I-014561 v.2 (2009) (Contact person: antoine.drouart@cea.fr) https://edms.in2p3.fr.

  10. P. Bertrand, Réglage faisceau de l’accélérateur SPIRAL 2, internal report, 2008 (Contact person: antoine.drouart@cea.fr) https://www-s3.cea.fr.

  11. Interactive Chart of the Nuclei with currently available and future beams at the GANIL/SPIRAL1/SPIRAL2 facility, http://pro.ganil-spiral2.eu/users-guide/accelerators/chart-beams/.

  12. R. Gobin, Development of a permanent magnet ECR source to produce a 5 mA deuteron beam at CEA/Saclay, in Proceedings of LINAC 2004, Lubeck, Germany, http://accelconf.web.cern.ch/AccelConf/l04/PAPERS/MOP73.PDF.

  13. T. Thuillier, Recent results of PHOENIX V2 and new prospects with PHOENIX V3, in Proceedings of ECRIS 2012, 117-120, 20th International Workshop on ECR Ion Sources, Sydney, Australie, http://hal.in2p3.fr/in2p3-00847236.

  14. On behalf of the S3 Collaboration (H. Savajols et al.), AIP Conf. Proc. 1238, 251 (2010) http://hal.in2p3.fr/in2p3-00466116/fr.

    Google Scholar 

  15. A. Drouart et al., EPJ Web of Conferences 17, 14004 (2011) http://dx.doi.org/10.1051/epjconf/20111714004.

    Article  Google Scholar 

  16. H. Savajols (spokesperson), Technical Proposal for the Spiral 2 instrumentation: S3 (2009) http://pro.ganil-spiral2.eu/spiral2/instrumentation/s3/working-documents/s3-technical-report.

  17. S3 Status Report, SPIRAL2 Scientific Advisory Committee, SPIRAL2 Week (2012) http://pro.ganil-spiral2.eu/spiral2/instrumentation/s3/working-documents/s3-status-report.

  18. X. Ledoux, S. Simakov, F. Rejmund, the NFS Collaboration, Technical Proposal for the SPIRAL 2 instrumentation: NFS, http://pro.ganil-spiral2.eu/spiral2/instrumentation/nfs/working-documents/nfs-technical-report.

  19. “The DESIR Facility (Decay, Excitation and Storage of Radioactive Ions)”, Bertram Blank (spokesperson), Letter of Intent for SPIRAL 2, http://pro.ganil-spiral2.eu/spiral2/letters-of-intent/loi-for-spiral2/letters-of-intent-list/texts-of-loi-for-spiral2/1/at_download/file.

  20. A. Drouart et al., Int. J. Mod. Phys. E 18, 2160 (2009) http://www.worldscientific.com/doi/abs/10.1142/S0218301309014482.

    Article  ADS  Google Scholar 

  21. E. Lamour, LoI Day 1 - 1: Fast ion-slow ion collisions - FISIC project, http://pro.ganil-spiral2.eu/spiral2/instrumentation/s3/working-documents/loi-day-1-experiments/fast-ion-slow-ion-collisions-2013fisic-project/at_download/file.

  22. S3: The Super Separator Spectrometer for LINAG beams, Spiral2 Letter of Intent, 2006 (Contact person: antoine.drouart@cea.fr).

  23. Lettres d’intention S3 et expériences “Day-1”, http://pro.ganil-spiral2.eu/spiral2/instrumentation/s3/working-documents/loi-day-1-experiments.

  24. Yu.Ts. Oganessian et al., Nucl. Phys. A 734, 109 (2004) http://dx.doi.org/10.1016/j.nuclphysa.2004.01.020.

    Article  ADS  Google Scholar 

  25. K. Subotic et al., Nucl. Instrum. Methods Phys. Res. A 481, 71 (2002) http://dx.doi.org/10.1016/S0168-9002(01)01367-5.

    Article  ADS  Google Scholar 

  26. S. Hofmann, Exciting Interdisciplinary Physics, in FIAS Interdisciplinary Science Series (2013) pp. 23-32, http://dx.doi.org/10.1007/978-3-319-00047-3_2.

  27. K. Morimoto et al., Nucl. Phys. A 738, 129 (2004) http://dx.doi.org/10.1016/j.nuclphysa.2004.04.021.

    Article  ADS  Google Scholar 

  28. Atomic and nuclear aspects of experiments at fusion barrier energy: the S3Fusion code, F. Déchery, A. Drouart, to be published.

  29. V.S. Nikolaev, I.S. Dmitriev, Phys. Lett. A 28, 277 (1968) http://dx.doi.org/10.1016/0375-9601(68)90282-X.

    Article  ADS  Google Scholar 

  30. H. Faure, Full simulation of the new generation windowless large area silicon-box for SIRIUS-S3, in Proceedings of the 3rd International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and Their Applications, ANIMMA 2013, http://dx.doi.org/10.1109/ANIMMA.2013.6728085.

  31. R. Ferrer et al., Nucl. Instrum. Methods B 317, 570 (2013) http://dx.doi.org/10.1016/j.nimb.2013.07.028.

    Article  ADS  Google Scholar 

  32. J. Gerl, W. Korten, B. Wadsworth, High-resolution γ-ray spectroscopy at SPIRAL 2 (AGATA - EXOGAM2), (2006) http://pro.ganil-spiral2.eu/spiral2/letters-of-intent/loi-for-spiral2/letters-of-intent-list/texts-of-loi-for-spiral2/7.-high-resolution-gamma-ray-spectroscopy-at-spiral2-agata-exogam2/at_download/file.

  33. I. Stefan, In-beam gamma spectroscopy of neutron-rich nuclei studied with PARIS at the intermediate focal plane of S3, LoI Day 1--7 http://pro.ganil-spiral2.eu/spiral2/instrumentation/s3/working-documents/loi-day-1-experiments/loi-day-1-7-in-beam-gamma-spectroscopy-of-neutron-rich-nuclei-studied-with-paris-at-the-intermediate-focal-plane-of-s3/at_download/file.

  34. J. Simpson et al., Acta Phys. Hung. 11, 159 (2000) http://pro.ganil-spiral2.eu/laboratory/detectors/exogam/exogam_aphns_11.pdf.

    Google Scholar 

  35. J. Simpson, J. Phys. Conf. Ser. 41, 72 (2006) http://iopscience.iop.org.gate4.inist.fr/1742-6596/41/1/006/.

    Article  ADS  Google Scholar 

  36. Agata Physics Case, Dimiter Balabanski and Dorel Bucurescu on behalf of the AGATA collaboration, 2008, http://npg.dl.ac.uk/agata_acc/publications_documentation/Physics-2008.pdf.

  37. A. Drouart et al., Nucl. Phys. A 834, 747c (2010) http://www.sciencedirect.com.gate4.inist.fr/science/article/pii/S0375947410001363.

    Article  ADS  Google Scholar 

  38. B. Erdelyi, J. Maloney, J.A. Nolen, Phys. Rev. ST Accel. Beams 10, 064002 (2007) http://journals.aps.org/prstab/pdf/10.1103/PhysRevSTAB.10.064002.

    Article  ADS  Google Scholar 

  39. Ch. Stodel et al., Nucl. Instrum. Methods Phys. Res. A 613, 480 (2012) http://www.sciencedirect.com.gate4.inist.fr/science/article/pii/S0168900209018798.

    Article  ADS  Google Scholar 

  40. Opera-3d Design Software by Cobham http://www.rcnp.osaka-u.ac.jp/sakemi/OPERA/ref-3d.pdf http://www.rcnp.osaka-u.ac.jp/sakemi/OPERA/ref-3d.pdf.

  41. SIGMAPHI ACCELERATOR TECHNOLOGY: designs, makes and measures magnetic systems and beam transport lines for particle accelerators, http://www.sigmaphi.fr, http://www.sigmaphi.fr.

  42. C.N. Davids, Split Anode for the First FMA Electric Dipole, ANL Phys. Div. Annual Report ANL-03/23 (2003) p. 104 http://www.phy.anl.gov/division/publications/annual_report/2002/I._Heavy-Ion_Sec._G.pdf.

  43. P.L. Walstrom, J. Fusion Energy 6, 265 (1987) http://dx.doi.org/10.1007/BF01050792.

    Article  ADS  Google Scholar 

  44. D. Uriot, TraceWin code, http://irfu.cea.fr/Sacm/logiciels.

  45. R. Duperrier, CEA Saclay Codes Review for High Intensities Linacs Computations, in Computational Science - ICCS 2002, Lecture Notes in Computer Science, Vol. 2331 (2002) pp. 411-418 http://link.springer.com.gate4.inist.fr/chapter/10.1007/3-540-47789-6_43 .

  46. 3D-cosine field map analysis, L. Manikonda Shashikant, J. Nolen, J. Payet, private communication, https://www-s3.cea.fr.

  47. G.R. Maloney, D.N. Jamieon, G.J.F. Legge, Nucl. Instrum. Methods Phys. Res. B 130, 97 (1997) http://www.sciencedirect.com/science/article/pii/S0168583X9700270X.

    Article  ADS  Google Scholar 

  48. Technical report of the current version of the open warm multipole, M.-H. Stodel, EMDS SP-RT-8SC7 I-024404, 2011 (Contact person: antoine.drouart@cea.fr) https://edms.in2p3.fr/edms/doc.info?document_id=I-024404&version=1&p_message=&p_tab=.

  49. O. Delferrière et al., Conf. Proc. C 100523, MOPEB024 (2010) https://accelconf.web.cern.ch/accelconf/IPAC10/papers/mopeb024.pdf.

    Google Scholar 

  50. S3-SIRIUS optical coupling v2, F. Déchery, edoc S3 internal report, 2014 https://www-s3.cea.fr/Groups/detection/s3-sirius_optical_co9678/view.

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to F. Déchery.

Additional information

Communicated by N. Alamanos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S3 Collaboration., Déchery, F., Drouart, A. et al. Toward the drip lines and the superheavy island of stability with the Super Separator Spectrometer S3 . Eur. Phys. J. A 51, 66 (2015). https://doi.org/10.1140/epja/i2015-15066-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15066-3

Keywords

Navigation