Skip to main content
Log in

Determination of the extraction efficiency for 233U source α-recoil ions from the MLL buffer-gas stopping cell

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Following the α decay of 233U, 229Th recoil ions are shown to be extracted in a significant amount from the MLL buffer-gas stopping cell. The produced recoil ions and subsequent daughter nuclei are mass purified with the help of a customized quadrupole mass spectrometer. The combined extraction and mass purification efficiency for 229Th3+ is determined via MCP-based measurements and via the direct detection of the 229Th α decay. A large value of (10±2)% for the combined extraction and mass purification efficiency of 229Th3+ is obtained at a mass resolution of about 1u/e. In addition to 229Th, also other α-recoil ions of the 233, 232U decay chains are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Peik, C. Tamm, Eur. Phys. Lett. 61, 181 (2003).

    Article  ADS  Google Scholar 

  2. L.A. Kroger, C.W. Reich, Nucl. Phys. A 259, 29 (1976).

    Article  ADS  Google Scholar 

  3. R. Helmer, C.W. Reich, Phys. Rev. C 49, 1845 (1994).

    Article  ADS  Google Scholar 

  4. B.R. Beck et al., Phys. Rev. Lett. 109, 142501 (2007).

    Article  ADS  Google Scholar 

  5. F.F. Karpeshin, M.B. Trzhaskovskaya, Phys. Rev. C 76, 054313 (2007).

    Article  ADS  Google Scholar 

  6. F.F. Karpeshin, M.B. Trzhaskovskaya, Phys. At. Nucl. 69-4, 571 (2006).

    Article  Google Scholar 

  7. E.V. Tkalya et al., Phys. Rev. C 61, 064308 (2000).

    Article  ADS  Google Scholar 

  8. E.V. Tkalya, JETP Lett. 71-8, 311 (2000).

    Article  ADS  Google Scholar 

  9. E. Peik, in Proceedings of the 7th symposium on frequency standards and metrology, Pacific Grove CA U.S.A., October 5-11 2008, Frequency Standards and Metrology (2009) p. 532.

  10. E. Swanberg et al., Am. Phys. Soc. 56, F1.00002 (2011).

    Google Scholar 

  11. W.G. Rellergert et al., Phys. Rev. Lett. 104, 200802 (2010).

    Article  ADS  Google Scholar 

  12. S. Porsev et al., Phys. Rev. Lett. 105, 182501 (2010).

    Article  ADS  Google Scholar 

  13. G.A. Kazakov et al., New J. Phys. 14, 083019 (2012).

    Article  ADS  Google Scholar 

  14. S. Raeder et al., J. Phys. B 44, 165005 (2011).

    Article  ADS  Google Scholar 

  15. X. Zhao et al., Phys. Rev. Lett. 109, 160801 (2012).

    Article  ADS  Google Scholar 

  16. E. Peik, K. Zimmermann, Phys. Rev. Lett. 111, 018901 (2013).

    Article  ADS  Google Scholar 

  17. K. Zimmermann, PhD thesis, University of Hannover, Germany (2010). .

  18. E. Swanberg, PhD thesis, University of California, Berkeley (2012).

  19. L.v.d. Wense et al., JINST 8, P03005 (2013).

    Article  ADS  Google Scholar 

  20. J.B. Neumayr et al., Rev. Sci. Instrum. 77, 065109 (2006).

    Article  ADS  Google Scholar 

  21. J.F. Ziegler, version TRIM-2012.03 was used.

  22. J.B. Neumayr, PhD thesis, Ludwig-Maximilians-Universität München, Munich, Germany (2004).

  23. W.M. Brubaker, Adv. Mass Spectrom. 4, 293 (1968).

    Google Scholar 

  24. E. Haettner, PhD thesis, University of Giessen, Germany (2011).

  25. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York 1985).

  26. K. Nordlund, Comput. Mater. Sci. 3, 448 (1995).

    Article  Google Scholar 

  27. T. Hashimoto et al., J. Inorg. Nucl. Chem. 43-10, 2233 (1981).

    Article  Google Scholar 

  28. NNDC Interactive Chart of Nuclides, available online at http://www.nndc.bnl.gov/chart, 2014, November 26 (Brookhaven National Laboratory, Brookhaven).

  29. H. Bateman, Proc. Cambridge Phil. Soc. 15, 423 (1910).

    MATH  Google Scholar 

  30. J. Magill, J. Galy, Radioactivity Radionuclides Radiation (Springer-Verlag, Berlin Heidelberg, 2005) p. 47.

  31. S.E. Taylor et al., Phys. Chem. Chem. Phys. 10, 422 (2008).

    Article  Google Scholar 

  32. H. Matzke, Radiat. Effects 53, 219 (1980).

    Article  Google Scholar 

  33. A. Fick, Philos. Mag. 10, 30 (1855).

    Google Scholar 

  34. V. Sonnenschein et al., Eur. Phys. J. A 48, 52 (2012).

    Article  ADS  Google Scholar 

  35. J. Oberheide et al., Meas. Sci. Technol. 8, 351 (1997).

    Article  ADS  Google Scholar 

  36. A. Kramida, Yu. Ralchenko, J. Reader, NIST Atomic Spectra Database (ver. 5.2), available online athttp://physics nist.gov/asd, 2014, November 26 (National Institute of Standards and Technology, Gaithersburg, MD).

  37. Yu. Kudryavtsev et al., Nucl. Instrum. Methods Phys. Res. B 179, 412 (2001).

    Article  ADS  Google Scholar 

  38. R. Johnsen et al., J. Phys. Chem. 61, 5404 (1974).

    Article  Google Scholar 

  39. C.J. Campbell et al., Phys. Rev. Lett. 106, 223001 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars v.d. Wense.

Additional information

Communicated by D. Pierroutsakou

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

v.d. Wense, L., Seiferle, B., Laatiaoui, M. et al. Determination of the extraction efficiency for 233U source α-recoil ions from the MLL buffer-gas stopping cell. Eur. Phys. J. A 51, 29 (2015). https://doi.org/10.1140/epja/i2015-15029-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15029-8

Keywords

Navigation