Skip to main content
Log in

Dynamics of kaonic nuclei in an improved quark mass density-dependent model

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The improved quark mass density-dependent model, which is able to provide a good description for the properties of both finite nuclei and bulk nuclear matter, is employed to investigate the properties of several possible light kaonic nuclei. The current approach is based on an extended version of the relativistic mean-field theory, where the kaon-nucleon and nucleon-nucleon interactions are treated on the same footing. In this work, the single K--nuclear states in the possible bubble nuclei are studied, with concentration on the experimentally accessible light nuclei. The K- binding energies, the decay widths, single-particle spectra, and nuclear and K- density distributions are evaluated. The calculations indicate that, when the K- meson is embedded in nuclei with speculated “bubble" structure, the depleted central nuclear density might be modified, and in certain cases, the bubble structure may even disappear. Furthermore, it is found that the properties of the kaonic nuclei are sensitive to the strength of the antikaon optical potential at saturation density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kishimoto et al., Nucl. Phys. A 754, 383c (2005)

    Article  ADS  MathSciNet  Google Scholar 

  2. T. Suzuki et al., Nucl. Phys. A 754, 375c (2005)

    Article  ADS  Google Scholar 

  3. T. Suzuki et al., Phys. Lett. B 597, 263 (2004)

    Article  ADS  Google Scholar 

  4. M. Agnello et al., Phys. Rev. Lett. 94, 212303 (2005)

    Article  ADS  Google Scholar 

  5. V.K. Magas, E. Oset, A. Ramos, H. Toki, Phys. Rev. C 74, 025206 (2006)

    Article  ADS  Google Scholar 

  6. M. Iwasaki et al., Nucl. Phys. A 804, 186 (2008)

    Article  ADS  Google Scholar 

  7. M. Agnello et al., Nucl. Phys. A 752, 139c (2005)

    Article  ADS  Google Scholar 

  8. D.B. Kaplan, A.E. Nelson, Phys. Lett. B 175, 57 (1986)

    Article  ADS  Google Scholar 

  9. G.E. Brown, C.H. Lee, M. Rho, V. Thorsson, Nucl. Phys. A 567, 937 (1994)

    Article  ADS  Google Scholar 

  10. G.Q. Li, C.H. Lee, G.E. Brown, Nucl. Phys. A 625, 372 (1997)

    Article  ADS  Google Scholar 

  11. N.K. Glendenning, J. Schaffner-Bielich, Phys. Rev. C 60, 025803 (1999)

    Article  ADS  Google Scholar 

  12. J.A. Pons, S. Reddy, P.J. Ellis, M. Prakash, J.M. Lattimer, Phys. Rev. C 62, 035803 (2000)

    Article  ADS  Google Scholar 

  13. V. Thorsson, M. Prakash, J.M. Lattimer, Nucl. Phys. A 572, 693 (1994)

    Article  ADS  Google Scholar 

  14. Y. Akaishi, T. Yamazaki, Phys. Rev. C 65, 044005 (2002)

    Article  ADS  Google Scholar 

  15. T. Yamazaki, Y. Akaishi, Phys. Lett. B 535, 70 (2002)

    Article  ADS  Google Scholar 

  16. Y. Akaishi, T. Yamazaki, Nucl. Phys. A 684, 409c (2000)

    Article  ADS  Google Scholar 

  17. A. Doté, H. Horiuchi, Y. Akaishi, T. Yamazaki, Phys. Rev. C 70, 044313 (2004)

    Article  ADS  Google Scholar 

  18. A. Doté, H. Horiuchi, Y. Akaishi, T. Yamazaki, Phys. Lett. B 590, 51 (2004)

    Article  ADS  Google Scholar 

  19. A. Doté, Y. Akaishi, T. Yamazaki, Nucl. Phys. A 754, 391c (2005)

    Article  ADS  Google Scholar 

  20. Y. Akaishi, A. Doté, T. Yamazaki, Phys. Lett. B 613, 140 (2005)

    Article  ADS  Google Scholar 

  21. J. Schaffner-Bielich, I.N. Mishustin, J. Bondorf, Nucl. Phys. A 625, 325 (1997)

    Article  ADS  Google Scholar 

  22. J. Schaffner-Bielich, A. Gal, I.N. Mishustin, H. Stöcker, W. Greiner, Phys. Lett. B 334, 268 (1994)

    Article  ADS  Google Scholar 

  23. N.V. Shevchenko, A. Gal, J. Mares, Phys. Rev. Lett. 98, 082301 (2007)

    Article  ADS  Google Scholar 

  24. N.V. Shevchenko, A. Gal, J. Mares, J. Révai, Phys. Rev. C 76, 044004 (2007)

    Article  ADS  Google Scholar 

  25. Y. Ikeda, T. Sato, Phys. Rev. C 76, 035203 (2007)

    Article  ADS  Google Scholar 

  26. X.-R. Zhou, H.-J. Schulze, Nucl. Phys. A 914, 332 (2013)

    Article  ADS  Google Scholar 

  27. X.-R. Zhou, H.-J. Schulze, Int. J. Mod. Phys. E 22, 1350038 (2013)

    Article  ADS  Google Scholar 

  28. J. Mareš, E. Friedman, A. Gal, Phys. Lett. B 606, 295 (2005)

    Article  ADS  Google Scholar 

  29. J. Mareš, E. Friedman, A. Gal, Nucl. Phys. A 770, 84 (2006)

    Article  ADS  Google Scholar 

  30. X.H. Zhong, G.X. Peng, L. Li, P.Z. Ning, Phys. Rev. C 74, 034321 (2006)

    Article  ADS  Google Scholar 

  31. D. Gazda, E. Friedman, A. Gal, J. Mareš, Phys. Rev. C 76, 055204 (2007)

    Article  ADS  Google Scholar 

  32. D. Gazda, E. Friedman, A. Gal, J. Mareš, Phys. Rev. C 77, 045206 (2008)

    Article  ADS  Google Scholar 

  33. D. Gazda, E. Friedman, A. Gal, J. Mareš, Phys. Rev. C 80, 035205 (2009)

    Article  ADS  Google Scholar 

  34. D. Gazda, E. Friedman, A. Gal, J. Mareš, Nucl. Phys. A 835, 287 (2010)

    Article  ADS  Google Scholar 

  35. J. Yamagata et al., Prog. Theor. Phys. 114, 301 (2005)

    Article  ADS  Google Scholar 

  36. E. Oset, H. Toki, Phys. Rev. C 74, 015207 (2006)

    Article  ADS  Google Scholar 

  37. J. Zmeskal, Prog. Part. Nucl. Phys. 61, 512 (2008)

    Article  ADS  Google Scholar 

  38. G.N. Fowler, S. Raha, R.M. Weiner, Z. Phys. C 9, 271 (1981)

    Article  ADS  Google Scholar 

  39. C. Wu, W.L. Qian, R.K. Su, Phys. Rev. C 77, 015203 (2008)

    Article  ADS  Google Scholar 

  40. C. Wu, R.K. Su, J. Phys. G: Nucl. Part. Phys. 36, 095101 (2009)

    Article  ADS  Google Scholar 

  41. C. Wu, R.K. Su, J. Phys. G: Nucl. Part. Phys. 35, 125001 (2008)

    Article  ADS  Google Scholar 

  42. C. Wu, Z.Z. Ren, J. Phys. G: Nucl. Part. Phys. 37, 105110 (2010)

    Article  ADS  Google Scholar 

  43. R.L. Xu, C. Wu, W.-L. Qian, Z.Z. Ren, J. Liu, Eur. Phys. J. A 49, 141 (2013)

    Article  ADS  Google Scholar 

  44. M. Grasso et al., Phys. Rev. C 79, 034318 (2009)

    Article  ADS  Google Scholar 

  45. H. Nakada, K. Sugiura, J. Margueron, Phys. Rev. C 87, 067305 (2013)

    Article  ADS  Google Scholar 

  46. A. Shukla, S. Åberg, Phys. Rev. C 89, 014329 (2014)

    Article  ADS  Google Scholar 

  47. G.A. Lalazissis, J. König, P. Ring, Phys. Rev. C 55, 540 (1997)

    Article  ADS  Google Scholar 

  48. G.A. Lalazissis, P. Ring, Phys. Lett. B 427, 225 (1998)

    Article  ADS  Google Scholar 

  49. G.A. Lalazissis et al., Phys. Lett. B 671, 36 (2009)

    Article  ADS  Google Scholar 

  50. B.G. Todd-Rutel, J. Piekarewicz, Phys. Rev. Lett. 95, 122501 (2005)

    Article  ADS  Google Scholar 

  51. J. Piekarewicz, Phys. Rev. C 73, 044325 (2006)

    Article  ADS  Google Scholar 

  52. F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, G. Shen, Phys. Rev. C 82, 055803 (2010)

    Article  ADS  Google Scholar 

  53. C. Vander Velde-Wilquet, J. Sacton, J.H. Wickens, D.N. Tovee, D.H. Davis, Nuovo Cimento A 39, 537 (1977)

    Article  ADS  Google Scholar 

  54. T. Sekihara, J. Yamagata-Sekihara, D. Jido, Y. Kanada-En’yo, Phys. Rev. C 86, 065205 (2012)

    Article  ADS  Google Scholar 

  55. K. Tsushima, D.H. Lu, A.W. Thomas, K. Saito, Phys. Lett. B 443, 26 (1998)

    Article  ADS  Google Scholar 

  56. C.J. Batty, E. Friedman, A. Gal, Phys. Rep. 287, 385 (1997)

    Article  ADS  Google Scholar 

  57. E. Friedman, A. Gal, Phys. Rep. 452, 89 (2007)

    Article  ADS  Google Scholar 

  58. E. Friedman, A. Gal, C.J. Batty, Phys. Lett. B 308, 6 (1993)

    Article  ADS  Google Scholar 

  59. E. Friedman, A. Gal, J. Mares, A. Cieplý, Phys. Rev. C 60, 024314 (1999)

    Article  ADS  Google Scholar 

  60. A. Ramos et al., Nucl. Phys. A 691, 258 (2001)

    Article  ADS  Google Scholar 

  61. K. Saito, A.W. Thomas, Phys. Lett. B 327, 9 (1994)

    Article  ADS  Google Scholar 

  62. J. Schaffner, I.N. Mishustin, Phys. Rev. C 53, 1416 (1996)

    Article  ADS  Google Scholar 

  63. T. Waas, W. Weise, Nucl. Phys. A 625, 287 (1997)

    Article  ADS  Google Scholar 

  64. V. Koch, Phys. Lett. B 337, 7 (1994)

    Article  ADS  Google Scholar 

  65. W. Scheinast et al., Phys. Rev. Lett. 96, 072301 (2006)

    Article  ADS  Google Scholar 

  66. A. Ramos, E. Oset, Nucl. Phys. A 671, 481 (2000)

    Article  ADS  Google Scholar 

  67. A. Cieplý, E. Friedman, A. Gal, J.Mareš, Nucl. Phys. A 696, 173 (2001)

    Article  ADS  Google Scholar 

  68. A. Martínez Torres, K.P. Khemchandani, E. Oset, Eur. Phys. J. A 36, 211 (2008)

    Article  ADS  Google Scholar 

  69. K.T.R. Davies, C.Y. Wong, S.J. Krieger, Phys. Lett. B 41, 455 (1972)

    Article  ADS  Google Scholar 

  70. A. Shukla, S. Åberg, S.K. Patra, J. Phys. G: Nucl. Part. Phys. 38, 095103 (2011)

    Article  ADS  Google Scholar 

  71. A. Baca, C. García-Recio, J. Nieves, Nucl. Phys. A 673, 335 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Xu.

Additional information

Communicated by R. Alkofer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R.L., Wu, C., Qian, W.L. et al. Dynamics of kaonic nuclei in an improved quark mass density-dependent model. Eur. Phys. J. A 51, 20 (2015). https://doi.org/10.1140/epja/i2015-15020-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15020-5

Keywords

Navigation