Skip to main content

Advertisement

Log in

Hadronic shift in pionic hydrogen

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

An Erratum to this article was published on 21 February 2019

This article has been updated

Abstract

The hadronic shift in pionic hydrogen has been redetermined to be ε 1s = 7.086 ± 0.007(stat) ± 0.006(sys) eV by X-ray spectroscopy of ground-state transitions applying various energy calibration schemes. The experiment was performed at the high-intensity low-energy pion beam of the Paul Scherrer Institut by using the cyclotron trap and an ultimate-resolution Bragg spectrometer with bent crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 21 February 2019

    After publication of the paper, the authors have noticed an error. Its correction is given in this erratum.

  • 21 February 2019

    After publication of the paper, the authors have noticed an error. Its correction is given in this erratum.

References

  1. S. Deser et al., Phys. Rev. 54, 774 (1954).

    Article  ADS  Google Scholar 

  2. T.L. Trueman, Nucl. Phys. 26, 57 (1961).

    Article  Google Scholar 

  3. E. Lambert, Helv. Phys. Acta 42, 667 (1969).

    Google Scholar 

  4. E. Lambert, Helv. Phys. Acta 43, 713 (1970).

    Google Scholar 

  5. J. Mitroy, I.A. Ivallov, J. Phys. G 27, 1421 (2001).

    Article  ADS  Google Scholar 

  6. V.E. Lyubovitzkij, A. Rusetski, Phys. Lett. B 494, 9 (2000).

    Article  ADS  Google Scholar 

  7. D. Eiras, J. Soto, Phys. Lett. B 491, 101 (2000).

    Article  ADS  Google Scholar 

  8. J. Gasser et al., Eur. Phys. J. C 26, 13 (2002).

    Article  ADS  Google Scholar 

  9. J. Gasser, V.E. Lyubovitzkij, A. Rusetski, Phys. Rep. 456, 167 (2008) and references therein.

    Article  ADS  Google Scholar 

  10. T.E.O. Ericson, B. Loiseau, S. Wycech, Phys. Lett. B 594, 76 (2004).

    Article  ADS  Google Scholar 

  11. E. Matsinos, G. Rasche, J. Mod. Phys. 3, 1369 (2012).

    Article  Google Scholar 

  12. E. Matsinos, G. Rasche, Int. J. Mod. Phys. A 28, 1350039 (2013).

    Article  ADS  Google Scholar 

  13. V. Bernard et al., Phys. Rev. C 52, 2185 (1995).

    Article  ADS  Google Scholar 

  14. D. Gotta et al., Lect. Notes Phys. 745, 165 (2008).

    Article  ADS  Google Scholar 

  15. M. Hoferichter, B. Kubis, U.-G. Meißner, Phys. Lett. B 678, 65 (2009).

    Article  ADS  Google Scholar 

  16. M. Hoferichter, B. Kubis, U.-G. Meißner, Nucl. Phys. A 883, 18 (2010).

    Article  ADS  Google Scholar 

  17. V. Baru et al., Phys. Lett. B 694, 473 (2011).

    Article  ADS  Google Scholar 

  18. V. Baru et al., Nucl. Phys. A 872, 69 (2011).

    Article  ADS  Google Scholar 

  19. P. Zemp, PhD thesis, University of Bern (2004).

  20. J. Spuller et al., Phys. Lett. B 67, 479 (1977).

    Article  ADS  Google Scholar 

  21. D. Gotta, Prog. Part. Nucl. Phys. 52, 133 (2004).

    Article  ADS  Google Scholar 

  22. PSI proposals R-98.01 and R-06.03, available at http://collaborations.fz-juelich.de/ikp/exotic-atoms.

  23. D.S. Covita et al., Phys. Rev. Lett. 102, 023401 (2009).

    Article  ADS  Google Scholar 

  24. Th. Strauch et al., Phys. Rev. Lett. 104, 142503 (2010).

    Article  ADS  Google Scholar 

  25. Th. Strauch et al., Eur. Phys. J. A 47, 88 (2011).

    Article  ADS  Google Scholar 

  26. A. Hirtl, in preparation.

  27. J.S. Cohen, Rep. Prog. Phys. 67, 1769 (2004).

    Article  ADS  Google Scholar 

  28. A.J. Rusi el Hassani et al., Z. Phys. A 351, 113 (1995).

    Article  ADS  Google Scholar 

  29. F.J. Hartmann, in Proceedings of Physics of Exotic Atoms on Electromagnetic Cascade and Chemistry, Erice, Italy, 1989 (Plenum Press, New York, 1990) p. 23 and p. 127, and references therein.

  30. Th.S. Jensen, V.E. Markushin, Lect. Notes Phys. 627, 37 (2003).

    Article  ADS  Google Scholar 

  31. M. Diepold et al., Phys. Rev. A 88, 042520 (2013).

    Article  ADS  Google Scholar 

  32. S. Jonsell, J. Wallenius, P. Froelich, Phys. Rev. A 59, 3440 (1999).

    Article  ADS  Google Scholar 

  33. S. Kilic, J.-P. Karr, L. Hilico, Phys. Rev. A 70, 042506 (2004).

    Article  ADS  Google Scholar 

  34. E. Lindroth, J. Wallenius, S. Jonsell, Phys. Rev. A 68, 032502 (2003) 69.

    Article  ADS  Google Scholar 

  35. Th.S. Jensen, private communication.

  36. L.M. Simons, Phys. Scr. T22, 90 (1988).

    Article  ADS  Google Scholar 

  37. L.M. Simons, Hyperfine Interact. 81, 253 (1993).

    Article  ADS  Google Scholar 

  38. D. Sigg et al., Nucl. Phys. A 609, 269 (1996).

    Article  ADS  Google Scholar 

  39. H.H. Johann, Z. Phys. 69, 185 (1931).

    Article  ADS  Google Scholar 

  40. D.F. Anagnostopoulos et al., Nucl. Instrum. Methods A 545, 217 (2005).

    Article  ADS  Google Scholar 

  41. D. Covita et al., Rev. Sci. Instrum. 79, 033102 (2008).

    Article  ADS  Google Scholar 

  42. J. Eggs, K. Ulmer, Z. Angew. Phys. 20, 118 (1965).

    Google Scholar 

  43. N. Nelms et al., Nucl. Instrum. Methods A 484, 419 (2002).

    Article  ADS  Google Scholar 

  44. P. Indelicato et al., Rev. Sci. Instrum. 77, 043107 (2006).

    Article  ADS  Google Scholar 

  45. M. Hennebach, Precision measurement of ground state transitions in pionic hydrogen, PhD thesis, Universität zu Köln (2003) http://kups.ub.uni-koeln.de/744/.

  46. R. Deslattes et al., Rev. Mod. Phys. 75, 35 (2003).

    Article  ADS  Google Scholar 

  47. T. Mooney, Argonne National Laboratory, private communication.

  48. D.F. Anagnostopoulos et al., Phys. Rev. A 60, 2018 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  49. Particle Data Group (J. Beringer et al.), Phys. Rev. D 86, 010001 (2012).

    Article  ADS  Google Scholar 

  50. R. Bacher et al., Phys. Rev. A 39, 1610 (1989).

    Article  ADS  Google Scholar 

  51. K. Kirch et al., Phys. Rev. A 59, 3375 (1999).

    Article  ADS  Google Scholar 

  52. D.F. Anagnostopoulos et al., Phys. Rev. Lett. 91, 240801 (2003).

    Article  ADS  Google Scholar 

  53. T. Siems et al., Phys. Rev. Lett. 84, 4573 (2000).

    Article  ADS  Google Scholar 

  54. L. Bracci, G. Fiorentini, Nuovo Cimento A 43, 9 (1978).

    Article  ADS  Google Scholar 

  55. A. Badertscher et al., Europhys. Lett. 54, 313 (2001).

    Article  ADS  Google Scholar 

  56. R. Bacher et al., Phys. Rev. Lett. 54, 2087 (1985).

    Article  ADS  Google Scholar 

  57. B. Jeckelmann, P.F.A. Goudsmit, J. Leisi, Phys. Lett. B 335, 326 (1994).

    Article  ADS  Google Scholar 

  58. S. Lenz et al., Nucl. Phys. B 416, 50 (1998).

    Google Scholar 

  59. S. Schlesser et al., Phys. Rev. C 84, 015211 (2011).

    Article  ADS  Google Scholar 

  60. J.C. Brice, J. Mater. Sci. 15, 161 (1980).

    Article  ADS  Google Scholar 

  61. G. Basile et al., Phys. Rev. Lett. 72, 3133 (1994).

    Article  ADS  Google Scholar 

  62. F. Cembali et al., J. Appl. Cryst. 25, 424 (1992).

    Article  Google Scholar 

  63. B.L. Henke, E.M. Gullikson, J.C. Davies, At. Data Nucl. Data Tables 54, 181 (1993).

    Article  ADS  Google Scholar 

  64. C.T. Chantler, J. Phys. Chem. Ref. Data 24, 71 (1995).

    Article  ADS  Google Scholar 

  65. R. Koch, Nucl. Phys. A 448, 707 (1986).

    Article  ADS  Google Scholar 

  66. H.-Ch. Schröder et al., Phys. Lett. B 469, 25 (1999).

    Article  ADS  Google Scholar 

  67. H.-Ch. Schröder et al., Eur. Phys. J. C 21, 433 (2001).

    Article  ADS  Google Scholar 

  68. J. Bailey et al., Phys. Lett. B 32, 369 (1970).

    Article  ADS  Google Scholar 

  69. A. Foster et al., Phys. Rev. C 28, 2374 (1983).

    Article  ADS  Google Scholar 

  70. E. Bovet et al., Phys. Lett. B 135, 231 (1985).

    Article  ADS  Google Scholar 

  71. W. Beer et al., Phys. Lett. B 261, 16 (1991).

    Article  ADS  Google Scholar 

  72. D. Sigg et al., Phys. Rev. Lett. 75, 3245 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Gotta.

Additional information

Communicated by Z.-E. Meziani

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hennebach, M., Anagnostopoulos, D.F., Dax, A. et al. Hadronic shift in pionic hydrogen. Eur. Phys. J. A 50, 190 (2014). https://doi.org/10.1140/epja/i2014-14190-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2014-14190-x

Keywords

Navigation