Skip to main content
Log in

Liposomes Containing Esters of the Natural Antioxidant Astaxanthin Modified with Pluronic F68 or DSPE-PEG 2000

  • NANOBIOMEDICINE AND NANOPHARMACEUTICALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Liposomes containing a natural antioxidant, astaxanthin esters, are prepared by dispersing the lipid film and evaporating from chloroform with further ultrasonic treatment. To increase the stability of the astaxanthin esters, liposomes based on Lipoid S75 (2 mg/mL) are modified with pluronic F68 or PEGylated distearylphosphatidylethanolamine (DSPE-PEG 2000). As a result of optimization, the ratio of phospholipid and modifiers is selected for stable liposomes with 0.5 mg/mL astaxanthin esters. Liposomes with 0.5% pluronic F68 consists of two fractions with sizes of 110 ± 15 and 440 ± 15 nm, and liposomes with DSPE-PEG 2000 (2.5 mg/mL) have one fraction with an average hydrodynamic diameter of 255 ± 40 nm. The ζ potentials of the liposomes are –35 ± 15 and –60 ± 10 mV, respectively. When mononuclear blood cells are incubated with the developed liposomes for 24 h, the survival rate is found to be 84 ± 4%. It is shown that liposomes with astaxanthin esters of different compositions inactivate the ABTS cation radical 17–50% more effectively than liposomes without astaxanthin esters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. A. Bustamante, P. Roberts, R. Aravena, and J. Valle, in Proceedings of the 11th International Congress Eng. Food, 2011, p. 5. https://doi.org/https://doi.org/10.3390/md16110432

  2. S. Takaichi, K. Matsui, M. Nakamura, et al., Comp. Biochem. Physiol. B 136, 317 (2003). https://doi.org/10.1016/s1096-4959(03)00209-4

    Article  PubMed  Google Scholar 

  3. T. Taksima, P. Chonpathompikunlert, M. Sroyraya, et al., Mar. Drugs 17, 628 (2019). https://doi.org/10.3390/md17110628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Boussiba, L. Fan, and A. Vonshak, Methods Enzymol. 213, 386 (1992). https://doi.org/10.1016/0076-6879(92)13140-S

    Article  CAS  Google Scholar 

  5. T. H. Wu, J. H. Liao, W. C. Hou, et al., J. Agric. Food Chem. 54, 2418 (2006). https://doi.org/10.1021/jf052651q

    Article  CAS  PubMed  Google Scholar 

  6. H. H. Du, R. Liang, R. M. Han, et al., J. Agric. Food Chem. 63, 912 doi: 4 (2015).https://doi.org/10.1021/acs.jafc.5b03658

  7. M. Kobayashi and Y. Sakamoto, Biotechnol. Lett. 21, 265 (1999). https://doi.org/10.1023/A:1005445927433

    Article  CAS  Google Scholar 

  8. F. Miao, D. Lu, Y. Li, and M. Zeng, Anal. Biochem. 352, 176 (2006). https://doi.org/10.1016/j.ab.2006.03.006

    Article  CAS  PubMed  Google Scholar 

  9. E. Rodrigues, L. R. B. Mariutti, and A. Z. Mercadante, Mar. Drugs 10, 1784 (2012). https://doi.org/10.3390/md10081784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. A. Gammone, G. Riccioni, and N. D’Orazio, Mar. Drugs 13, 6226 (2015). https://doi.org/10.3390/md13106226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Y. M. A. Naguib, J. Agric. Food Chem. 48, 1150 (2000). https://doi.org/10.1021/jf991106k

    Article  CAS  PubMed  Google Scholar 

  12. Y. V. Viazau, R. G. Goncharik, I. S. Kulikova, et al., Bioresour. Bioprocess 8 (1) (2021). https://doi.org/10.1186/s40643-021-00410-5

  13. F. Böhm, R. Edge, and G. Truscott, Mol. Nutr. Food Res. 56, 205 (2012). https://doi.org/10.1002/mnfr.201100222

    Article  CAS  PubMed  Google Scholar 

  14. R. R. Ambati, P. S. Moi, S. Ravi, and R. G. Aswathanarayana, Mar. Drugs 12, 128 (2014). https://doi.org/10.3390/md12010128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. H. Che, Q. Li, T. Zhang, et al., J. Agric. Food Chem. 66, 4948 (2018). https://doi.org/10.1021/acs.jafc.8b00988

    Article  CAS  PubMed  Google Scholar 

  16. A. M. Popov, O. N. Krivoshapko, and A. A. Artyukov, Russ. J. Biopharm. 5, 13 (2013). https://doi.org/10.15789/1563-0625-2018-2-179-192

    Article  Google Scholar 

  17. C. Galasso, C. Corinaldesi, and C. Sansone, Antioxidants 6, 96 (2017). https://doi.org/10.3390/antiox6040096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Z. Kohandel, T. Farkhondeh, M. Aschner, and S. Samarghandian, Biomed. Pharmacother. 137, 111374 (2021). https://doi.org/10.1016/j.biopha.2021.111374

    Article  CAS  PubMed  Google Scholar 

  19. T. Iwamoto, K. Hosoda, R. Hirano, et al., J. Atheroscler. Thromb. 7, 216 (2000). https://doi.org/10.5551/jat1994.7.216

    Article  CAS  PubMed  Google Scholar 

  20. Y. Kishimoto, H. Yoshida, and K. Kondo, Mar. Drugs 14, 1 (2016). https://doi.org/10.3390/md14020035

    Article  CAS  Google Scholar 

  21. S. Fakhri, L. Dargahi, F. Abbaszadeh, and M. Jorjani, Eur. J. Pain (UK) 23, 750 (2019). https://doi.org/10.1002/ptr.6797

    Article  CAS  Google Scholar 

  22. R. Landon, V. Gueguen, H. Petite, et al., Mar. Drugs 18, 1 (2020). https://doi.org/10.3390/md18070357

    Article  CAS  Google Scholar 

  23. Y. Yang, S. Hu, J. He, et al., Medicine (Baltimore) 98, e17557 (2019). https://doi.org/10.1097/MD.0000000000017557

    Article  PubMed  Google Scholar 

  24. J. S. Park, J. H. Chyun, Y. K. Kim, et al., Nutr. Metab. 7, 1 (2010). https://doi.org/10.1186/1743-7075-7-18

    Article  CAS  Google Scholar 

  25. Y. Wang and E. Mandelkow, Nat. Rev. Neurosci. 17, 5 (2016). https://doi.org/10.1038/nrn.2015.1

    Article  CAS  PubMed  Google Scholar 

  26. B. Grimmig, C. Hudson, L. Moss, et al., GeroScience 41, 77 (2019). https://doi.org/10.1007/s11357-019-00051-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. P. Lobos, B. Bruna, A. Cordova, et al., Neural Plast. 2016 (2016). https://doi.org/10.1155/2016/3456783

  28. S. O. Rahman, B. P. Panda, S. Parvez, et al., Biomed. Pharmacother 110, 47 (2019). https://doi.org/10.1016/j.biopha.2018.11.043

    Article  CAS  PubMed  Google Scholar 

  29. C. Galasso, I. Orefice, P. Pellone, et al., Mar. Drugs 16, 1 (2018). https://doi.org/10.3390/md16080247

    Article  CAS  Google Scholar 

  30. J. P. Yuan, J. Peng, K. Yin, and J. H. Wang, Mol. Nutr. Food Res. 55, 150 (2011). https://doi.org/10.1002/mnfr.201000414

    Article  CAS  PubMed  Google Scholar 

  31. S. Hama, S. Uenishi, A. Yamada, et al., Biol. Pharm. Bull. 35, 2238 (2012). https://doi.org/10.1248/bpb.b12-00715

    Article  CAS  PubMed  Google Scholar 

  32. M. P. Barros, E. Pinto, P. Colepicolo, and M. Pedersén, Biochem. Biophys. Res. Commun. 288, 225 (2001). https://doi.org/10.1006/bbrc.2001.5765

    Article  CAS  PubMed  Google Scholar 

  33. C. Kamezaki, A. Nakashima, A. Yamada, et al., J. Clin. Biochem. Nutr. 59, 100 (2016). https://doi.org/10.3164/jcbn.15-153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. C. Tan, J. Xue, S. Abbas, et al., J. Agric. Food Chem. 62, 6726 (2014). https://doi.org/10.1021/jf405622f

    Article  CAS  PubMed  Google Scholar 

  35. A. Cantrell, D. J. McGarvey, T. G. Truscott, et al., Arch. Biochem. Biophys. 412, 47 (2003). https://doi.org/10.1016/S0003-9861(03)00014-6

    Article  CAS  PubMed  Google Scholar 

  36. S. Goto, K. Kogure, K. Abe, et al., Biochim. Biophys. Acta—Biomembr. 1512, 251 (2001). https://doi.org/10.1016/S0005-2736(01)00326-1

  37. F. Tamjidi, M. Shahedi, J. Varshosaz, and A. Nasirpour, Innov. Food Sci. Emerg. Technol. 26, 366 (2014). https://doi.org/10.1016/S0005-2736(01)00326-1

    Article  CAS  Google Scholar 

  38. M. M. R. Meor. Mohd. Affandi, T. Julianto, and A. B. A. Majeed, Asian J. Pharm. Clin. Res. 4 (Suppl. 1), 143 (2011).

    Google Scholar 

  39. D. M. Kim, S. S. Hyun, P. Yun, et al., Int. J. Cosmet. Sci. 34, 64 (2012). https://doi.org/10.1111/j.1468-2494.2011.00682.x

    Article  CAS  PubMed  Google Scholar 

  40. S. Palchetti, V. Colapicchioni, L. Digiacomo, et al., Biochim. Biophys. Acta—Biomembr. 1858, 189 (2016). https://doi.org/10.1016/j.bbamem.2015.11.012

  41. N. D. James, R. J. Coker, D. Tomlinson, et al., Clin. Oncol. 6, 294 (1994). https://doi.org/10.1016/s0936-6555(05)80269-9

    Article  CAS  Google Scholar 

  42. T. Yang, M. K. Choi, and F. De Cui, et al., J. Control. Release 120, 169 (2007). https://doi.org/10.1016/j.jconrel.2007.05.011

    Article  CAS  PubMed  Google Scholar 

  43. M. J. Santander-Ortega, A. B. Jódar-Reyes, N. Csaba, et al., J. Colloid Interface Sci. 302, 522 (2006). https://doi.org/10.1016/j.jcis.2006.07.031

    Article  CAS  PubMed  Google Scholar 

  44. G. Ma and C. Song, J. Appl. Polym. Sci. 104, 1895 (2007). https://doi.org/10.1002/app.25866

    Article  CAS  Google Scholar 

  45. A. Orlef, E. Stanek, K. Czamara, et al., Chem. Commun. R. Soc. Chem. 58, 9022 (2022). https://doi.org/10.1039/d2cc02649j

    Article  CAS  Google Scholar 

  46. M. Dai, C. Li, Z. Yang, et al., Antioxidants 9, 1 (2020). https://doi.org/10.3390/antiox9020126

    Article  CAS  Google Scholar 

  47. S. Chintong, W. Phatvej, U. Rerk-Am, et al., Antioxidants 8, 1 (2019). https://doi.org/10.3390/antiox8050128

    Article  CAS  Google Scholar 

  48. Y. Weesepoel, H. Gruppen, W. De Bruijn, and J. P. Vincken, J. Agric. Food Chem. 62 (42), 10254 (2014). https://doi.org/10.1021/jf503520q

    Article  CAS  PubMed  Google Scholar 

  49. Z. Chen, W. Li, L. Shi, et al., Eur. J. Pharm. Biopharm. 156, 143 (2020). https://doi.org/10.1016/j.ejpb.2020.09.005

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We express our gratitude to the representative office of Lipoid AG and its head A.V. Symon for providing the lipids. The equipment of the “Probe and Electron Microscopy” resource center of the National Research Center “Kurchatov Institute” was used in the work.

Funding

The work was carried out within the framework of the National Research Center “Kurchatov Institute” thematic plan 1f.4.1: “The Study of the processes of Generation, Transmission, and Distribution of Energy in Living Organisms, Aimed at Finding New Approaches to the Creation of Therapeutic Agents, New Bioenergy Devices, and Artificial Photosynthesis Systems” and agreement no. 07-1-21 of Moscow State University “Physical–chemical Properties of Biomembranes under Normal Conditions, in Pathology, and under the Influence of Environmental Factors.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kulikov.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All studies were conducted in accordance with the principles of biomedical ethics as outlined in the 1964 Declaration of Helsinki and its later amendments. They were also approved by the Local Ethics Committee on Biomedical Research of the National Research Center “Kurchatov Institute,” no. NG-1/01.13 dated November 3, 2021.

Each participant in the study provided voluntary written informed consent after receiving an explanation of the potential risks and benefits, as well as the nature of the upcoming study.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchenkova, N.S., Barkar, K.E., Kulikov, E.A. et al. Liposomes Containing Esters of the Natural Antioxidant Astaxanthin Modified with Pluronic F68 or DSPE-PEG 2000. Nanotechnol Russia 18 (Suppl 2), S240–S249 (2023). https://doi.org/10.1134/S2635167623601511

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167623601511

Navigation