Skip to main content
Log in

Manufacture and Testing of a Pulsed Hardware Neural Network with Memristor Synapses for a Biomorphic Neuroprocessor

  • NANOELECTRONICS AND NEUROMORPHIC COMPUTER SYSTEMS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

A composite memristor-diode crossbar, which is the basis of the memory matrix of a biomorphic neuroprocessor, is fabricated using the methods of magnetron sputtering and electron lithography. Hardware testing of the memory-matrix operation in the mode of single-layer perceptron synapses, which can be considered as the first layer of a biomorphic neural network and perform the primary processing of incoming information in a biomorphic neuroprocessor, is carried out. The generation of a new association during retraining caused by the arrival of new input information is demonstrated. The influence of adjacent neurons on the synaptic current due to parasitic currents between adjacent cells in the memristor-diode crossbar is shown. With the help of the constructed hardware spiking neural network, the arrival of new unknown information can be identified with the generation of new associations in a biomorphic neural processor, and the neural network can learn to comprehend this information while improving itself. Therefore, it will allow the transition from narrow to general artificial intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L. Khacef, N. Abderrahmane, and B. Miramond, in Proceedings of the International Joint Conference on Neural Network IJCNN'2018, 2018, p. 1. https://doi.org/10.1109/ijcnn.2018.8489241

  2. J. L. Lobo, J. D. Ser, A. Bifet, and N. Kasabov, Neural Netw. 121, 88 (2020). https://doi.org/10.1016/j.neunet.2019.09.004

    Article  Google Scholar 

  3. M. Prezioso, F. Merrikh-Bayat, D. B. Strukov, et al., Nature (London, U.K.) 521, 61 (2015). https://doi.org/10.1038/nature14441

    Article  CAS  Google Scholar 

  4. Y. V. Pershin and M. di Ventra, Neural Netw. 23, 881 (2010). https://doi.org/10.1016/j.neunet.2010.05.001

    Article  Google Scholar 

  5. Z. Wang, X. Wang, and A. Novel, IEEE Trans. Circuits Syst. I: Reg. Pap. 65, 2210 (2018). https://doi.org/10.1109/TCSI.2017.2780826

    Article  Google Scholar 

  6. L. Yang, Z. Zeng, Y. Huang, and S. Wen, IEEE Trans. Cogn. Dev. Syst. 10, 1133 (2018). https://doi.org/10.1109/TCDS.2018.2859303

    Article  Google Scholar 

  7. Z. Wang, M. Rao, J.-W. Han, et al., Nat. Commun. 9, 3208 (2018). https://doi.org/10.1038/s41467-018-05677-5

    Article  CAS  Google Scholar 

  8. X. Zhang and K. Long, IEEE Access. 7, 15262 (2019). https://doi.org/10.1109/ACCESS.2019.2894634

    Article  Google Scholar 

  9. A. A. Minnekhanov, A. V. Emelyanov, D. A. Lapkin, et al., Sci. Rep. 9, 10800 (2019). https://doi.org/10.1038/s41598-019-47263-9

    Article  CAS  Google Scholar 

  10. V. A. Demin, D. V. Nekhaev, I. A. Surazhevsky, et al., Neural Netw. 134, 64 (2021). https://doi.org/10.1016/j.neunet.2020.11.005

    Article  CAS  Google Scholar 

  11. M. Hu, C. E. Graves, C. Li, et al., Adv. Mater. 30, 1705914 (2018). https://doi.org/10.1002/adma.201705914

    Article  CAS  Google Scholar 

  12. F. Cai, S. Kumar, and T. V. Vaerenbergh, Nat. Electron. 3, 409 (2020). https://doi.org/10.1038/s41928-020-0436-6

    Article  Google Scholar 

  13. A. D. Pisarev, A. N. Busygin, S. Yu. Udovichenko, and O. V. Maevsky, Microelectron. J. 102, 104827 (2020). https://doi.org/10.1016/j.mejo.2020.104827

    Article  Google Scholar 

  14. V. A. Filippov, A. N. Bobylev, A. N. Busygin, et al., Neural Comput. Appl. 32, 2471 (2020). https://doi.org/10.1007/s00521-019-04383-7

    Article  Google Scholar 

  15. J. Liu, L. J. Mcdaid, J. Harkin, et al., IEEE Trans. Neural Netw. Learn. Syst. 30, 865 (2018). https://doi.org/10.1109/TNNLS.2018.2854291

    Article  Google Scholar 

  16. A. Pisarev, A. Busygin, A. Bobylev, et al., Microelectron. Eng. 236, 111471 (2021). https://doi.org/10.1016/j.mee.2020.111471

    Article  CAS  Google Scholar 

  17. A. N. Bobylev and S. Yu. Udovichenko, Russ. Microelectron. 45, 396 (2016). https://doi.org/10.1134/S1063739716060020

    Article  CAS  Google Scholar 

  18. A. D. Pisarev, A. N. Busygin, S. Yu. Udovichenko, and O. V. Maevsky, Microelectron. Eng. 198, 1 (2018). https://doi.org/10.1016/j.mee.2018.06.008

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grants no. 19-07-00272 “Electrophysical properties of a combined memristor-diode crossbar—a new component of nanoelectronics intended for the manufacture of memory and logical matrices of a neuroprocessor” and no. 19-37-90030 “Generation of new knowledge in a neural network based on an array of memristor synapses in the memory matrix of a biomorphic neuroprocessor and the principles of increasing the speed and energy efficiency of information processing on a specialized device in comparison with existing computing facilities”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Udovichenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobylev, A.N., Busygin, A.N., Gubin, A.A. et al. Manufacture and Testing of a Pulsed Hardware Neural Network with Memristor Synapses for a Biomorphic Neuroprocessor. Nanotechnol Russia 16, 761–766 (2021). https://doi.org/10.1134/S2635167621060057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621060057

Navigation