Skip to main content
Log in

Nanostructured Polymer-Containing Composites as an Efficient Tool for Molecular Diagnostic

  • REVIEWS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The review considers the role that nanotechnologies play in the development of sample preparation methods for molecular diagnostic, focusing on the methods to isolate nucleic acids (NAs) from biological samples and the underlying physicochemical processes. Methods based on reversible adsorption (that is, solid-phase selective extraction) are the most efficient and allow miniaturization and automatization of the related processes. In the approach most commonly used until recently, NAs from biological samples are bound with a sorbent and then eluted (positive selection). The review analyzes the potential and advantages of an alternative one-step NA isolation method. Sorbents utilized in the method bind proteins and other components of biological samples, but are inert towards NAs in terms of absorption (negative selection). Consideration is given to the methods used to produce nanostructured composite sorbents on the basis of solid matrices (porous silica, glass multicapillaries, and synthetic membranes) via modification with nano-thick polymer layers to achieve negative selection toward NAs. Primary attention is payed to fluoropolymers and polyanilines, their applications, and fields of their alternative use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. B. R. Glick and J. J. Pasternak, Molecular Biotechnology Principles and Applications of Recombinant DNA, 3rd ed. (ASM Press, USA, 2005).

    Google Scholar 

  2. D. V. Rebrikov, G. A. Samatov, D. Yu. Trofimov, et al., Real-Time PCR: A Review of Approaches to Data Analysis, Ed. by D. V. Rebrikov (BINOM, Moscow, 2009) [in Russian].

    Google Scholar 

  3. F. Miescher, Med.-Chem. Untersuch. 4, 441 (1871).

    Google Scholar 

  4. M. Meselson and F. W. Stahl, Proc. Natl. Acad. Sci. U. S. A. 44, 671 (1958).

    Article  CAS  Google Scholar 

  5. J. Sambrook and D. W. Russel, Molecular Cloning: A Laboratory Manual, 3rd ed. (Cold Spring Harbor Laboratory Press, New York, 2001).

    Google Scholar 

  6. M. A. Marko, R. Chipperfield, and H. C. Birnboim, Anal. Biochem., No. 121, 382 (1982).

  7. P. Chomczynski and N. Sacchi, Nat. Protocol., No. 1, 581 (2006).

  8. P.-A. Albertson, Partion of Cell and Macromoleculs. Separation and Purification of Biomolecules, Cell Oorganelles, Membranes and Cell in Aqueous Polymer Two-Phase Systems and their Use in Biochemical Analysis and Biotechnology, 3rd ed. (Wiley, New York, 1986).

    Google Scholar 

  9. S. M. Carr and O. M. Griffiths, Biochem. Genet., No. 25, 385 (1987).

  10. B. Perez-Ramirez and J. J. Steckert, in Therapeutic Proteins: Methods and Protocols, Ed. by C. M. Smales and D. C. James, Vol. 308 of Methods in Molecular Biology (Humana, New York, 2005), p. 301.

  11. S. R. Noles, “Thermo scientific,” Application Note AN-LECF-PLASDNA-0408 (2008), p. 1.

    Google Scholar 

  12. J. Crouse and D. Amorese, Focus, No. 9 (2), 3 (1987).

  13. J. A. Zeugin and J. L. Hartley, Focus, No. 7 (4), 1 (1985).

  14. K. R. Paithankar and K. S. Prasad, Nucl. Acids Res., No. 19 (6), 1346 (1991).

  15. J.-Ch. Janson, Protein Purification: Principles, High Resolution Methods, and Applications, 3rd ed. (Wiley, New York, 2011).

    Book  Google Scholar 

  16. D. Rother, T. Sen, D. East, and I. J. Bruce, Nanomedicine, No. 6, 281 (2011).

  17. S. C. Tan and B. C. Yiap, J. Biomed. Biotechnol., No. 574398, 1 (2009).

  18. S. Berensmeier, Appl. Microbiol. Biotechnol. 73, 495 (2006).

    Article  CAS  Google Scholar 

  19. O. S. Antonova, N. A. Korneva, Yu. V. Belov, and V. E. Kurochkin, Nauch. Priborostr. 20 (1), 3 (2010).

    CAS  Google Scholar 

  20. M. Li Kong, P. R. Laurent, and J. C. Stephen, Curr. Pharm. Anal. 2, 95 (2006).

    Article  Google Scholar 

  21. E. J. Durhan, M. T. Lukasewycz, and J. R. Amato, Environ. Toxicol. Chem. 9, 463 (1990).

    Article  CAS  Google Scholar 

  22. L. A. Osterman, Chromatography of Proteins and Nucleic Acids (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  23. C. R. Kuske, K. L. Banton, D. L. Adorada, et al., Appl. Environ. Microbiol. 64, 2463 (1998).

    Article  CAS  Google Scholar 

  24. N. Yamamoto, Y. Matsuzaka, M. Kimura, et al., J. Biosci. Bioeng. 107, 464 (2009).

    Article  CAS  Google Scholar 

  25. M. J. Heller, R. A. Robinson, L. J. Burgart, et al., Mod. Pathol. 5, 203 (1992).

    CAS  Google Scholar 

  26. T. S. Marentis, V. Kusler, G. G. Yaralioglu, et al., Ultrasound Med. Biol. 31, 1265 (2005).

    Article  Google Scholar 

  27. A. Abdel-Latif and G. Osman, Plant Methods, No. 13:1 (2017). https://plantmethods.biomedcentral.com/track/pdf/10.1186/s13007-016-0152-4.

  28. J. Zhou, M. A. Bruns, and J. M. Tiedje, Appl. Environ. Microbiol. 62, 316 (1996).

    Article  CAS  Google Scholar 

  29. T. Sekikawa, Yu. Kawasaki, and Y. Katayama, New Biotechnol. 29, 139 (2011).

    Article  CAS  Google Scholar 

  30. D. Chacon-Cortes and L. R. Griffiths, J. Biorepos. Sci. Appl. Med. 2, 1 (2014).

    Google Scholar 

  31. M. D. Braid, L. M. Daniels, and C. L. Kitts, J. Microbiol. Methods 52, 389 (2003).

    Article  CAS  Google Scholar 

  32. K. M. Elkins, “DNA extraction,” in Forensic DNA Biology: A Laboratory Manual (Academic, New York, 2012).

    Google Scholar 

  33. K. Ikuta, S. Maruo, T. Fujisawa, and A. Yamada, in Proceedings of the MEMS'99 12th IEEE International Conference on Micro Electro Mechanical Systems (Orlando, 1999), p. 376.

  34. C. R. Cabrera and P. Yager, Electrophoresis 22, 355 (2001).

    Article  CAS  Google Scholar 

  35. P. S. Chockalingam, L. A. Jurado, and H. W. Jarrett, Mol. Biotechnol. 19, 189 (2001).

    Article  CAS  Google Scholar 

  36. J. S. Smith and F. B. Johnson, Methods Mol. Biol. 608, 207 (2010).

    Article  CAS  Google Scholar 

  37. F. Xiang, Y. H. Lin, and J. Wen, Anal. Chem. 71, 1485 (1999).

    Article  CAS  Google Scholar 

  38. T. P. Goloub, L. K. Koopal, B. H. Bijsterbosch, and M. P. Sidorova, Langmuir 12, 3188 (1996).

    Article  CAS  Google Scholar 

  39. D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry (W. H. Freeman, USA, 2008).

    Google Scholar 

  40. W. M. Gelbart, R. F. Bruinsma, P. A. Pincus, and V. A. Parsegian, Phys. Today 53 (9), 38 (2000).

    Article  CAS  Google Scholar 

  41. F. Fogolari, A. Brigo, and H. Molinari, J. Mol. Recognit. 15, 377 (2002).

    Article  CAS  Google Scholar 

  42. K. A. Melzak, C. S. Sherwood, R. F. B. Turner, and C. A. Haynes, J. Colloid Interface Sci. 181, 635 (1996).

    Article  CAS  Google Scholar 

  43. M. Beld, S. Sol, J. Goudsmit, and R. Boom, Nucl. Acids Res. 24, 2618 (1996).

    Article  CAS  Google Scholar 

  44. D. G. Petrov, E. D. Makarova, N. A. Korneva, et al., Nauch. Priborostr. 25 (2), 91 (2015).

    Article  Google Scholar 

  45. M. Magnani, L. Galuzzi, and I. J. Bruce, J. Nanosci. Nanotechnol. 6, 2302 (2006).

    Article  CAS  Google Scholar 

  46. T. Sen and I. J. Bruce, Microporous Macroporous Mater. 120, 246 (2009).

    Article  CAS  Google Scholar 

  47. J. I. Taylor, C. D. Hurst, M. J. Davies, et al., J. Chromatogr., A 890, 159 (2000).

    Article  CAS  Google Scholar 

  48. S. Odenbach, Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids (Springer, Germany, 2009).

    Book  Google Scholar 

  49. I. J. Bruce, J. Taylor, M. Todd, et al., J. Magn. Magn. Mater. 284, 145 (2004).

    Article  CAS  Google Scholar 

  50. G. Amagliani, G. Bri, E. Omiccioli, et al., Food Microbiol. 21, 597 (2004).

    Article  CAS  Google Scholar 

  51. A. Sebastianelly, T. Sen, and I. J. Bruce, Lett. Appl. Microbiol. 46, 488 (2008).

    Article  CAS  Google Scholar 

  52. E. Bertozzini, A. Penna, E. Pierboni, et al., J. Appl. Phycol. 17, 223 (2005).

    Article  CAS  Google Scholar 

  53. K. Henco, A. Stichel, and M. Colpan, US Patent No. 5057426 A (1991).

  54. C. E. Smith, D. L. Holmes, D. J. Simpson, et al., US Patent No. 6310199 B1 (2001).

  55. E. H. Reitan, A. Deggerdal, and V. Skagestad, Patent WO2004/108925 (2004).

  56. http://www.rosmed.ru/scatalog/show/7860/PCR_analizator_Cobas_AmpliPrep.

  57. https://www.qiagen.com/us/resources/resourcedetailıd=15606127-cc31-4681-a27a-bcec58502f72&lang=en.

  58. M. Kruhøffer, L. Dyrskjøt, and T. Voss, J. Mol. Diagn. 9, 452 (2007).

    Article  CAS  Google Scholar 

  59. https://www.thermofisher.com/ru/ru/home/life-science/dna-rna-purification-analysis/automated-purification-extraction/kingfisher-instruments.html.

  60. https://www.labortechnik.com/en/pipetting-robot/x-tractor-gene.

  61. J. McNeil, D. Ecker, S. A. Hofstadler, et al., Patent WO/2005/009202 (2005).

  62. R. F. Baggio and G. A. Gagne, Jr., Eur. Patent No. 1873242A3 (2008).

  63. R. Bridenbaugh, W. Dang, and L. Bussey, Patent WO/2000/005358 (2000).

  64. A. Stevenson, A. Potts, D. Donovan, and M. Baker, Patent WO/2005/012521 (2005).

  65. J. Wen, L. A. Legendre, J. M. Bienvenue, and J. P. Landers, Anal. Chem. 80, 6472 (2008).

    Article  CAS  Google Scholar 

  66. R. Boom, C. J. Sol, Salimans, et al., J. Clin. Microbiol. 28, 495 (1990).

    Article  CAS  Google Scholar 

  67. R. M. McCormick, Anal. Biochem. 181, 66 (1989).

    Article  CAS  Google Scholar 

  68. L. A. Christel, K. Petersen, W. McMillan, and M. A. Northrup, J. Biomech. Eng. Trans. ASME 12, 22 (1999).

    Article  Google Scholar 

  69. N. C. Cady, S. Stelick, and C. A. Batt, Biosens. Bioelectron. 19, 59 (2003).

    Article  CAS  Google Scholar 

  70. B. Hindson, D. M. Gutierrez, K. D. Ness, et al., Analyst 133, 248 (2008).

    Article  CAS  Google Scholar 

  71. H. J. Tian, A. F. R. Huhmer, and J. P. Landers, Anal. Bioch. 283, 175 (2000).

    Article  CAS  Google Scholar 

  72. K. A. Wolfe, M. C. Breadmore, J. P. Ferrance, et al., Electrophoresis 23, 727 (2002).

    Article  CAS  Google Scholar 

  73. M. C. Breadmore, K. A. Wolfe, I. G. Arciba, et al., Anal. Chem. 75, 1880 (2003).

    Article  CAS  Google Scholar 

  74. J. M. Bienvenue, N. Duncalf, D. Marchiarullo, et al., J. Forensic Sci. 51, 266 (2006).

    Article  CAS  Google Scholar 

  75. Q. Wu, J. M. Bienvenue, B. J. Hassan, et al., Anal. Chem. 78, 5704 (2006).

    Article  CAS  Google Scholar 

  76. Y. C. Chung, M. S. Jan, Y. C. Lin, et al., Lab. Chip. 4, 141 (2004).

    Article  CAS  Google Scholar 

  77. https://www.sigmaaldrich.com/catalog/product/mm/ZTC18S?lang=en&region=RU.

  78. F. Svec and J. M. J. Frechet, Anal. Chem. 64, 820 (1992).

    Article  CAS  Google Scholar 

  79. K. Moshimara, B. D. Bennett, M. T. Dulay, et al., J. Sep. Sci. 25, 1226 (2002).

    Article  Google Scholar 

  80. J. Wen, C. Guillo, J. P. Ferrance, and J. P. Landers, Anal. Chem. 78, 1673 (2006).

    Article  CAS  Google Scholar 

  81. J. Wen, C. Guillo, J. P. Ferrance, and J. P. Landers, Anal. Chem. 79, 6135 (2007).

    Article  CAS  Google Scholar 

  82. A. Bhattacharyya and C. M. Klapperich, Anal. Chem. 78, 788 (2006).

    Article  CAS  Google Scholar 

  83. T. B. Tennikova, “High performance membrane chromatography: Formation of the structure of the pore space of polymeric carriers for interphase distribution of proteins,” Doctoral (Chem.) Dissertation (Mosc. State Univ., Moscow, 1998).

  84. E. S. Sinitsyna, E. N. Vlasova, E. G. Vlakh, and T. B. Tennikova, Russ. J. Appl. Chem. 81, 1403 (2008).

    Article  CAS  Google Scholar 

  85. E. S. Sinitsina, “Polymeric monolithic materials for biochips with controlled porosity and various reactive groups,” Cand. Sci. (Chem.) Dissertation (Inst. Macromol. Comp. RAS, St. Peterburg, 2014).

  86. T. Nakagawa, T. Tanaka, D. Niwa, et al., J. Biotechnol. 116, 105 (2005).

    Article  CAS  Google Scholar 

  87. R. Ogawa, N. Kaji, S. Hashioka, et al., Jpn. J. Appl. Phys., Pt 1 46, 2771 (2007).

    Article  CAS  Google Scholar 

  88. W. D. Cao, C. J. Christopher, J. P. Ferrance, and J. P. Landers, Anal. Chem. 78, 7222 (2006).

    Article  CAS  Google Scholar 

  89. M. A. Witek, S. D. Lopis, D. Shawn, et al., Nucl. Acids Res. 34 (10), e74 (2006).

    Article  CAS  Google Scholar 

  90. M. A. Witek, M. L. Hupert, D. S.-W. Park, et al., Anal. Chem. 80, 3483 (2008).

    Article  CAS  Google Scholar 

  91. J. Kim, K. V. Voelkerding, and B. K. Gale, J. Micromech. Microeng. 16, 33 (2006).

    Article  CAS  Google Scholar 

  92. G. F. Jiang and D. J. Harrison, Analyst 125, 2176 (2000).

    Article  CAS  Google Scholar 

  93. B. C. Satterfield, S. Stern, M. R. Caplan, et al., Anal. Chem. 79, 6230 (2007).

    Article  CAS  Google Scholar 

  94. P. Belgrader, B. Yuan, and N. Aflatooni, Patent WO/2005/028635 (2005).

  95. L. Ugozzoli, Patent US 20080003585A1 (2008).

  96. B. H. Weigl and R. L. Bardell, Patent WO/2006/081324 (2006).

  97. J. P. Landers, J. P. Ferrance, J. Wen, and C. Guillo, Patent WO/2008/058204 (2008).

  98. R. V. Partha Sarathy, K. K. Ericson, and W. Bedingham, Patent WO/2005/068626 (2005).

  99. V. Samper, J. I. Hongmiao, Yu. Chen, et al., Patent WO/2005/066343 (2005).

  100. P. D. Southgate and Z. G. Loewy, Patent WO/1997/047967 (1997).

  101. S. B. Jovanovich, I. I. Blaga, and D. Rank, Patent WO/2008/030631 (2008).

  102. H. Barlag, S. Birkle, W. Gumbrecht, et al., Patent WO/2006/042838 (2006).

  103. C. F. Battrell, B. H. Weigl, M. Shen, et al., Patent WO/2004/065010 (2004).

  104. Z. Chen, M. G. Mauk, J. Wang, et al., Ann. N. Y. Acad. Sci. 1098, 429 (2007).

    Article  CAS  Google Scholar 

  105. H. Inoue, I. T. Knight, G. A. Dale, and R. R. Colwell, Patent WO/2007/028084 (2007).

  106. N. C. Cady, C. A. Batt, S. J. Stelick, et al., Patent WO/2006/085948 (2006).

  107. R. H. Liu, M. J. Lodes, T. Nguyen, et al., Anal. Chem. 78, 4184 (2006).

    Article  CAS  Google Scholar 

  108. R. H. Liu, T. Nguyen, K. Schwarzkopf, et al., Anal. Chem. 78, 1980 (2006).

    Article  CAS  Google Scholar 

  109. C. W. Hiatt, A. Shelokov, E. J. Rosental, and J. M. Galimore, J. Chromatogr. 56, 362 (1971).

  110. T. Darling, J. Albert, P. Russel, et al., J. Chromatogr. 131, 383 (1977).

    Article  CAS  Google Scholar 

  111. L. Letot, J. Lesec, and C. Quivoron, J. Liq. Chromatogr. 4, 1311 (1981).

    Article  CAS  Google Scholar 

  112. V. P. Kop’ev, L. S. Zhigis, P. D. Reshetov, et al., Vopr. Virusol. 34, 760 (1989).

    Google Scholar 

  113. M. Tardy, J. L. Tayot, M. Roumyantseff, et al., Chromatography of Synthetic and Biological Polymers (Ellis Horwood, Chichester, 1978), Vol. 2.

    Google Scholar 

  114. X. Santarelli, D. Muller, and J. Jozefonvicz, J. Chromatogr. 443, 55 (1988).

  115. V. U. Bukbarde, A. K. Aren, I. V. Gruzin’, et al., USSR Inventor’s Certificate No. 935121 (1980).

  116. A. Rosevear and P. Mattock, Patent US 1602432 (1981).

  117. A. Alpert and F. E. Regnier, J. Chromatogr. 185, 375 (1979).

  118. T. G. Lawson, F. E. Regnier, and H. L. Weith, Anal. Biochem. 133, 85 (1983).

    Article  CAS  Google Scholar 

  119. K. Watanabe, W. S. Chow, and G. P. Royer, Anal. Biochem. 127, 155 (1982).

    Article  CAS  Google Scholar 

  120. R. R. Drager and F. E. Regnier, Anal. Biochem. 145, 47 (1985).

    Article  CAS  Google Scholar 

  121. M. Wilchek, FEBS Lett. 33, 70 (1973).

    Article  CAS  Google Scholar 

  122. A. Kurganov, O. Kuzmenko, V. A. Davankov, et al., J. Chromatogr. 506, 391 (1990).

    Article  CAS  Google Scholar 

  123. S. Gupta, E. Pfannkoch, and F. E. Regnier, Anal. Biochem. 128, 196 (1983).

    Article  CAS  Google Scholar 

  124. A. Alpert, J. Chromatogr. 266, 23 (1983).

  125. Z. Elrassi and C. Horvath, J. Liq. Chromatogr. 9, 3245 (1986).

    Article  CAS  Google Scholar 

  126. E. Papirer and V. T. Nguyen, J. Polym. Sci. B: Polym. Lett. 10, 167 (1972).

    Article  CAS  Google Scholar 

  127. A. E. Ivanov, L. V. Verkhovskaya, S. N. Khil’ko, and V. P. Zubov, Bioorg. Khim. 16, 1028 (1990).

    CAS  Google Scholar 

  128. A. E. Ivanov, L. S. Zhigis, E. Yu. Chekhovskikh, et al., Bioorg. Khim. 11, 1527 (1985).

    CAS  Google Scholar 

  129. A. E. Ivanov, L. S. Zhigis, M. F. Turchinskii, et al., Mol. Gen., Mikrobiol. Virusol. 11, 39 (1987).

    Google Scholar 

  130. A. B. Taubman, in Proceedings of the 5th All-Union Symposium on Mechanoemission and Mechanochemistry of Solids, October 1975, Vol. 1, p. 79.

  131. D. Berg, H. J. G. Tiller, J. Kopka, and B. Lanyguth, Z. Chem. 18, 219 (1978).

  132. S. S. Ivanchev, Radical Polymerization (Khimiya, Leningrad, 1985) [in Russian].

    Google Scholar 

  133. M. T. Bryk, Polymerization on a Solid Surface of Inorganic Substances (Naukova Dumka, Kiev, 1981) [in Russian].

    Google Scholar 

  134. B. L. Tsetlin, A. V. Vlasov, and I. Yu. Babkin, Radiation Chemistry of Polymers (Nauka, Moscow, 1973), p. 108.

    Google Scholar 

  135. M. A. Bruk, Russ. Chem. Rev. 56, 81 (1987).

    Article  Google Scholar 

  136. A. V. Olenin, A. L. Kristyuk, V. B. Golubev, et al., Vysokomol. Soedin., Ser. A 25, 423 (1983).

    CAS  Google Scholar 

  137. M. A. Bruk, A. D. Abkin, V. V. Demidovich, et al., Vysokomol. Soedin., Ser. A 17, 3 (1975).

    CAS  Google Scholar 

  138. M. Bleha, E. Votavova, M. Tlustakova, et al., Angew. Makromol. Chem. 107, 25 (1982).

    Article  CAS  Google Scholar 

  139. K. Hayakawa, K. Kawase, and H. Yamakita, J. Appl. Polym. Sci. 21, 2921 (1977).

    Article  CAS  Google Scholar 

  140. R. Abuelafiya and J. Pesek, J. Liq. Chromatogr. 12, 1571 (1989).

    Article  CAS  Google Scholar 

  141. J. Schutijser, US Patent No. 4415631 (1983).

  142. V. P. Varlamov, A. V. Vlasov, T. E. Bannikova, et al., USSR Inventor’s Certificate No. 689200 (1980).

  143. J. Huth and N. Danielson, Anal. Chem. 54, 930 (1982).

    Article  CAS  Google Scholar 

  144. R. W. Siergiej and N. D. Danielson, J. Chromatogr. Sci. 2, 362 (1983).

    Article  Google Scholar 

  145. M. Kruepelman and N. D. Danielson, Anal. Chem. 57, 340 (1985).

    Article  Google Scholar 

  146. G. E. Berendsen, K. A. Pikaart, L. de Galan, and C. Olieman, Anal. Chem. 52, 1990 (1980).

    Article  CAS  Google Scholar 

  147. H. A. H. Billiet and L. de Galan, J. Chromatogr., A 218, 443 (1981).

  148. R. K. Kobos, J. W. Eveleigh, and R. Arentzen, Trends Biotechnol. 7, 101 (1989).

    Article  CAS  Google Scholar 

  149. G. Xindu and P. W. Carr, J. Chromatogr. 269, 96 (1983).

  150. D. E. Williams and P. M. Kabra, Anal. Chem. 62, 807 (1990).

    Article  CAS  Google Scholar 

  151. T. C. Pinkerton, J. Chromatogr. 544, 13 (1991).

  152. V. V. Saburov, M. R. Muidinov, S. A. Gur’yanov, et al., Zh. Fiz. Khim. 65, 2692 (1991).

    CAS  Google Scholar 

  153. M. R. Muidinov, Ross. Khim. Zh. 46 (3), 72 (2002).

    CAS  Google Scholar 

  154. M. R. Muidinov, Ross. Khim. Zh. 52 (3), 81 (2008).

    CAS  Google Scholar 

  155. M. R. Muidinov, “Synthesis and study of composite materials modified with surface-grafted polytetrafluoroethylene,” Doctoral (Chem.) Dissertation (Mosc. Inst. Fine Chem. Technol., Moscow, 2006).

  156. M. R. Muidinov, RF Patent No. 2104695 (1998).

  157. S. Hjerten, J. Chromatogr., A 159, 47 (1978).

  158. S. Hjerten and U. Hellman, J. Chromatogr., A 202, 391 (1980).

  159. A. E. Ivanov, V. V. Saburov, and V. P. Zubov, Adv. Polym. Sci. 104, 135 (1992).

    Article  CAS  Google Scholar 

  160. A. D. Kataev, “Synthesis of composite polytrifluorostyrene-containing sorbents and their use in chromatography of biopolymers,” Cand. Sci. (Chem.) Dissertation (Mosc. Inst. Fine Chem. Technol., Moscow, 1993).

  161. W. F. Gorham, J. Polym. Sci., Pt. 1A: Polym. Chem. 4, 3027 (1966).

    CAS  Google Scholar 

  162. S. Y. Park, J. Blackwell, S. N. Chvalun, et al., Macromolecules 32, 7845 (1999).

    Article  CAS  Google Scholar 

  163. V. M. Kobryanskii, S. A. Arnautov, and M. V. Motyakin, Vysokomol. Soedin., Ser. A 37, 35 (1995).

    CAS  Google Scholar 

  164. I. Yu. Sapurina, “Nanostructured polyaniline and composite materials based on it,” Doctoral (Chem.) Dissertation (St. Peterburg, Moscow, 2015).

  165. O. D. Omel’chenko, “Polymerization of aniline in the presence of polymeric sulfonic acids: The effect of polyacid conformation on the properties of polyaniline complexes,” Cand. Sci. (Chem.) Dissertation (Moscow, 2014).

  166. K. A. Milakin, “Structure and properties of polyaniline obtained in the presence of carbon matrices,” Cand. Sci. (Chem.) Dissertation (Moscow, 2015).

  167. E. Yu. Yagudaeva, “Synthesis of polyaniline-containing sorbents for the isolation and purification of nucleic acids and proteins,” Cand. Sci. (Chem.) Dissertation (Mosc. Inst. Fine Chem. Technol., Moscow, 2013).

  168. A. Riede, M. Helmstedt, I. Sapurina, and J. Stejskal, J. Colloid Interface Sci. 248, 413 (2002).

    Article  CAS  Google Scholar 

  169. J. Stejskal and I. Sapurina, Materials Syntheses, A Practical Guide (Springer, Wien, 2008), p. 199

    Google Scholar 

  170. M. Trchova, I. Sapurina, J. Prokes, and J. Stejskal, Synth. Met. 135, 305 (2003).

    Article  CAS  Google Scholar 

  171. E. Ruckenstein and Y. Sun, Synth. Met. 74, 107 (1995).

    Article  CAS  Google Scholar 

  172. C. Zhu, C. Wang, L. Yang, et al., Appl. Phys. A 68, 435 (1999).

    Article  CAS  Google Scholar 

  173. R. V. Gregory, W. C. Kimbrell, and H. H. Kuhn, Synth. Met. 28, 823 (1989).

    Article  Google Scholar 

  174. R. Megha, Y. T. Ravikiran, B. Chethan, et al., J. Mater. Sci.: Mater. Electron. 29, 7253 (2018).

    CAS  Google Scholar 

  175. K. Tzou and R. V. Gregory, Synth. Met. 47, 267 (1992).

    Article  CAS  Google Scholar 

  176. Y. F. Nicolau and A. Ermolieff, Synth. Met. 71, 2073 (1995).

    Article  CAS  Google Scholar 

  177. A. V. Orlov, S. G. Kiseleva, O. Yu. Yurchenko, and G. P. Karpacheva, Polymer Sci., Ser. A 42, 1292 (2000).

    Google Scholar 

  178. S. G. Kiseleva, “Polymerization of aniline in a heterophase system,” Cand. Sci. (Chem.) Dissertation (Topchiev Inst. Petrochem. Synth. RAS, 2003).

  179. M. A. Guseva, A. A. Isakova, O. L. Gribkova, V. A. Tverskoi, V. F. Ivanov, A. V. Vannikov, and Yu. A. Fedotov, Polymer Sci., Ser. A 49, 4 (2007).

    Article  Google Scholar 

  180. L. F. Sun, H. B. Liu, R. Clark, and S. C. Yang, Synth. Met. 84, 67 (1997).

    Article  CAS  Google Scholar 

  181. W. Liu, A. Anagnostopoulos, F. F. Bruno, et al., Synth. Met. 101, 738 (1999).

    Article  CAS  Google Scholar 

  182. A. V. Caramyshev, E. G. Evtushenko, V. F. Ivanov, et al., Biomacromolecules 6, 1360 (2005).

    Article  CAS  Google Scholar 

  183. Yu. E. Kirsh, Yu. A. Fedotov, N. N. Iudina, and E. E. Katalevskii, Vysokomol. Soedin., B 32, 403 (1990).

  184. Yu. E. Kirsh, Yu. A. Fedotov, N. I. Iudina, et al., Vysokomol. Soedin., Ser. A 33, 1127 (1991).

    CAS  Google Scholar 

  185. E. Yu. Yagudaeva, D.-J. Liaw, A. A. Ischenko, et al., J. Mater. Sci. 49, 3491 (2014).

    Article  CAS  Google Scholar 

  186. Liaw Der-Jang, E. Yagudaeva, A. Prostyakova, et al., Colloids Surf., B 145, 912 (2016).

    Article  CAS  Google Scholar 

  187. E. Yagudaeva, D. Zybin, A. Vikhrov, et al., Colloids Surf., B 163, 83 (2018).

    Article  CAS  Google Scholar 

  188. D.-Dzh. L’yao, D. I. Zybin, A. I. Prostyakova, et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 61, 422 (2018).

    Google Scholar 

  189. V. P. Zubov, D. V. Kapustin, A. N. Generalova, et al., Polym. Sci., Ser. A 49, 1247 (2007).

    Article  Google Scholar 

  190. D. V. Kapustin, V. V. Saburov, L. L. Zavada, A. V. Evstratov, G. B. Barsamyan, and V. P. Zubov, Russ. J. Bioorg. Chem. 24, 770 (1998).

    Google Scholar 

  191. D. V. Kapustin, “Synthesis of composite sorbents based on fluorinated polybutadienes for the isolation of nucleic acids,” Cand. Sci. (Chem.) Dissertation (Moscow, 2000).

  192. E. Yu. Yagudaeva, M. R. Muydinov, D. V. Kapustin, and V. P. Zubov, Russ. Chem. Bull. 56, 1166 (2007).

    Article  CAS  Google Scholar 

  193. E. Yu. Yagudaeva, Ya. A. Bukina, A. I. Prostyakova, et al., Polym. Sci., Ser. A 51, 675 (2009).

    Article  Google Scholar 

  194. D. Kapustin, A. Prostyakova, Ya. Bryk, et al., Nanocomposites and Polymers with Analytical Methods (InTech, Croatia, 2011), p. 83.

    Google Scholar 

  195. A. I. Prostyakova, “Synthesis of polymer-containing sorbents and their use for one-step DNA isolation,” Cand. Sci. (Chem.) Dissertation (Moscow, 2013).

  196. D. V. Kapustin, A. I. Prostyakova, D. Yu. Ryazantcev, and V. P. Zubov, Nanomedicine 6, 241 (2011).

    Article  CAS  Google Scholar 

  197. D. V. Kapustin, “Fluoropolymer- and polyaniline-containing composites as an effective tool for molecular biotechnology,” Doctoral (Chem.) Dissertation (Moscow, 2020).

  198. Yu. S. Skibina, V. I. Beloglazov, V. V. Tuchin, et al., RF Patent No. 2547597 (2015).

  199. D. V. Kapustin, A. V. Tarasov, A. I. Prostyakova, et al., RF Patent No. 2631934 C1 (2017).

  200. D. V. Kapustin, E. Y. Yagudaeva, V. P. Zubov, et al., in Frontiers in DNA Research, Ed. by C. R. Woods (Nova Science, New York, 2006), p. 113.

    Google Scholar 

  201. D. V. Kapustin, A. I. Prostyakova, Ya. I. Alexeev, et al., Acta Natur. 6 (2), 6 (2014).

    Google Scholar 

  202. D. V. Kapustin, A. I. Prostyakova, and V. P. Zubov, Bioanalysis 6, 957 (2014).

    Article  CAS  Google Scholar 

  203. I. P. Zaitseva, E. P. Serebryanskii, M. G. Skal’naya, and D. V. Kapustin, Vestn. Vosstanovl. Med. 2 (60), 62 (2014).

    Google Scholar 

  204. G. Vaczine-Shlosser, C. Ribbing, P. K. Bachman, et al., Patent WO 2011004308 A1 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Kapustin.

Additional information

Translated by T. Tkacheva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapustin, D.V., Prostyakova, A.I., Zybin, D.I. et al. Nanostructured Polymer-Containing Composites as an Efficient Tool for Molecular Diagnostic. Nanotechnol Russia 16, 19–41 (2021). https://doi.org/10.1134/S2635167621010067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621010067

Navigation