Skip to main content
Log in

Investigation of Low-Temperature Hydrogen Permeability of Surface Modified Pd–Cu Membranes

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Pd60%Cu40% alloy membranes are modified with nanostructured coatings to intensify the low-temperature (25–100°С) transport of hydrogen. Classical palladium black and filamentous particles are deposited as surface modifiers by electrodeposition. The experimental data confirm that the deposition of the modifying layer on both surfaces of the Pd60%Cu40% alloy membranes can considerably reduce surface limitations for the process of hydrogen transfer. In the low-temperature hydrogen transport processes, the developed membranes demonstrate high and stable fluxes up to 0.36 mmol s–1 m–2 and high hydrogen permeability up to 1.33 × 10–9 mol s–1 m–2 Pa–0.5. For the Pd60%Cu40% alloy membranes modified with nanofilaments hydrogen permeability is up to 1.3 times higher compared with the membranes modified with classical black and up to 3.9 times compared with the uncoated membranes. The Pd60%Cu40% alloy membranes also exhibit a high level of H2/N2 selectivity, up to 3552. The strategy of surface modification of palladium-based membranes can shed new light on the development and manufacture of high-performance and selective membranes for ultrapure hydrogen production units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. P. Filippov and A. B. Yaroslavtsev, Russ. Chem. Rev. 90, 627 (2021). https://doi.org/10.1070/RCR5014

    Article  Google Scholar 

  2. P. Y. Apel, S. Velizarov, A. V. Volkov, et al., Membr. Membr. Technol. 4, 69 (2022). https://doi.org/10.1134/S2517751622020032

    Article  CAS  Google Scholar 

  3. E. Y. Mironova, M. M. Ermilova, N. V. Orekhova, et al., Membr. Membr. Technol. 1, 246 (2019). https://doi.org/10.1134/S251775161904005X

    Article  CAS  Google Scholar 

  4. I. Stenina and A. Yaroslavtsev, Processes 11, 56 (2023). https://doi.org/10.3390/pr11010056

    Article  CAS  Google Scholar 

  5. I. S. Petriev, I. S. Lutsenko, P. D. Pushankina, et al., Russ. Phys. J. 65, 312 (2022). https://doi.org/10.1007/s11182-022-02637-x

    Article  CAS  Google Scholar 

  6. L. P. Didenko, V. N. Babak, L. A. Sementsova, et al., Membr. Membr. Technol. 5, 69 (2023). https://doi.org/10.1134/S2517751623020038

    Article  CAS  Google Scholar 

  7. F. Gallucci, E. Fernandez, P. Corengia, et al., Chem. Eng. Sci. 92, 40 (2013). https://doi.org/10.1016/j.ces.2013.01.008

    Article  CAS  Google Scholar 

  8. A. A. Lytkina, N. V. Orekhova, M. M. Ermilova, et al., Int. J. Hydrogen Energy 44, 13310 (2019). .https://doi.org/10.1016/j.ijhydene.2019.03.205

    Article  CAS  Google Scholar 

  9. P. Y. Apel, O. V. Bobreshova, A. V. Volkov, et al., Membr. Membr. Technol. 1, 45 (2019). https://doi.org/10.1134/S2517751619020021

    Article  CAS  Google Scholar 

  10. A. A. Lytkina, N. V. Orekhova, M. M. Ermilova, et al., Pet. Chem. 57, 1219 (2017). https://doi.org/10.1134/S0965544117130072

    Article  CAS  Google Scholar 

  11. A. S. Fedotov, M. V. Tsodikov, and A. B. Yaroslavtsev, Processes 10 (2060) (2022). https://doi.org/10.3390/pr10102060

  12. M. El-Shafie, S. Kambra, and Y. Hayakawa, S. Afr. J. Chem. Eng. 35, 118 (2021). https://doi.org/10.1016/j.sajce.2020.09.005

    Article  Google Scholar 

  13. I. A. Prikhno, E. Y. Safronova, I. A. Stenina, et al., Membr. Membr. Technol. 2, 265 (2020). https://doi.org/10.1134/S2517751620040095

    Article  CAS  Google Scholar 

  14. I. Petriev, P. Pushankina, N. Shostak, et al., Int. J. Mol. Sci. 23 (228) (2022). https://doi.org/10.3390/ijms23010228

  15. S. Ryu, A. Badakhsh, J. G. Oh, et al., Membranes 13, 23 (2023). https://doi.org/10.3390/membranes13010023

    Article  CAS  Google Scholar 

  16. S. Fasolin, S. Barison, F. Agresti, et al., Membranes 12, 722 (2022). https://doi.org/10.3390/membranes12070722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Z. Yin, Z. Yang, M. Du, et al., J. Membr. Sci. 654, 120572 (2022). https://doi.org/10.1016/j.memsci.2022.120572

    Article  CAS  Google Scholar 

  18. I. S. Petriev, P. D. Pushankina, I. S. Lutsenko, et al., Dokl. Phys. 66, 209 (2021). https://doi.org/10.1134/S1028335821080061

    Article  CAS  Google Scholar 

  19. S.-E. Nam and K.-H. Lee, J. Membr. Sci. 192, 177 (2001). https://doi.org/10.1016/S0376-7388(01)00499-9

    Article  CAS  Google Scholar 

  20. S.-E. Nam and K.-H. Lee, Ind. Eng. Chem. Res. 44, 100 (2005). https://doi.org/10.1021/ie040025x

    Article  CAS  Google Scholar 

  21. M. S. Islam, M. M. Rahman, and S. Ilias, Int. J. Hydrog. Energy 37, 3477 (2012). https://doi.org/10.1016/j.ijhydene.2011.11.024

    Article  CAS  Google Scholar 

  22. D.-W. Kim, Y. J. Park, and J.-W. Moon, Thin Solid Films 516, 3036 (2008). https://doi.org/10.1016/j.tsf.2007.11.126

    Article  CAS  Google Scholar 

  23. M. L. Bosko, A. D. Fontana, A. Tarditi, et al., Int. J. Hydrogen Energy 46, 15572 (2021). https://doi.org/10.1016/j.ijhydene.2021.02.082

    Article  CAS  Google Scholar 

  24. K. Zhu, X. Li, Y. Zhang, et al., Int. J. Hydrog. Energy 47, 6734 (2022). https://doi.org/10.1016/j.ijhydene.2021.12.021

    Article  CAS  Google Scholar 

  25. F. S. Alrashed, S. N. Paglieri, Z. S. Alismail, et al., Int. J. Hydrogen Energy 46, 21939 (2021). https://doi.org/10.1016/j.ijhydene.2021.04.020

    Article  CAS  Google Scholar 

  26. N. Sazali, Int. J. Adv. Manuf. Technol. 107, 2465 (2020). https://doi.org/10.1007/s00170-020-05196-y

    Article  Google Scholar 

  27. M. R. Rahimpour, F. Samimi, A. Babapoor, et al., Chem. Eng. Process. 121, 24 (2017). https://doi.org/10.1016/j.cep.2017.07.021

    Article  CAS  Google Scholar 

  28. W. Wei, L. C. Liu, H. R. Gong, et al., Comput. Mater. Sci. 159, 440 (2019). https://doi.org/10.1016/j.commatsci.2018.12.037

    Article  CAS  Google Scholar 

  29. C. Zhao, A. Goldbach, and H. Xu, J. Membr. Sci. 542, 60 (2017). https://doi.org/10.1016/j.memsci.2017.07.049

    Article  CAS  Google Scholar 

  30. V. M. Ievlev, K. A. Solntsev, A. L. Vasiliev, et al., Processes 10, 2632 (2022). https://doi.org/10.3390/pr10122632

    Article  CAS  Google Scholar 

  31. D.-K. Moon, Y.-J. Han, G. Bang, et al., Korean J. Chem. Eng. 36, 563 (2019). https://doi.org/10.1007/s11814-019-0237-7

    Article  CAS  Google Scholar 

  32. B. H. Howard, R. P. Killmeyer, K. S. Rothenberger, et al., J. Membr. Sci. 241, 207 (2004). https://doi.org/10.1016/j.memsci.2004.04.031

    Article  CAS  Google Scholar 

  33. S. Nayebossadri, J. Speight, and D. Book, J. Membr. Sci. 451, 216 (2014). https://doi.org/10.1016/j.memsci.2013.10.002

    Article  CAS  Google Scholar 

  34. M. H. Martin, J. Galipaud, A. Tranchot, et al., Electrochim. Acta 90, 615 (2013). https://doi.org/10.1016/j.electacta.2012.10.140

    Article  CAS  Google Scholar 

  35. L. Yuan, A. Goldbach, and H. Xu, J. Phys. Chem. B 111, 10952 (2007). https://doi.org/10.1021/jp073807n

    Article  CAS  PubMed  Google Scholar 

  36. M. C. Gao, L. Ouyang, and Ö. N. Doğan, J. Alloys Compd. 574, 368 (2013). https://doi.org/10.1016/j.jallcom.2013.05.126

    Article  CAS  Google Scholar 

  37. L. Yuan, A. Goldbach, and H. Xu, J. Phys. Chem. B. 112, 12692 (2008). https://doi.org/10.1021/jp8049119

    Article  CAS  PubMed  Google Scholar 

  38. S. M. Opalka, W. Huang, D. Wang, et al., J. Alloys Compd. 446447, 583 (2007). https://doi.org/10.1016/j.jallcom.2007.01.130

  39. Y. Shinoda, M. Takeuchi, N. Dezawa, et al., Int. J. Hydrogen Energy 46, 36291 (2021). https://doi.org/10.1016/j.ijhydene.2021.08.127

    Article  CAS  Google Scholar 

  40. F. Roa, M. J. Block, and J. D. Way, Desalination 147, 411 (2002). https://doi.org/10.1016/S0011-9164(02)00636-7

    Article  CAS  Google Scholar 

  41. I. Petriev, P. Pushankina, S. Bolotin, et al., J. Membr. Sci. 620, 118894 (2021). https://doi.org/10.1016/j.memsci.2020.118894

    Article  CAS  Google Scholar 

  42. D. S. Kudashova, I. V. Falina, N. A. Kononenko, et al., Membr. Membr. Technol. 5, 18 (2023). https://doi.org/10.1134/S2517751623010043

    Article  CAS  Google Scholar 

  43. A. B. Yaroslavtsev, Solid State Ionics 176, 2935 (2005). https://doi.org/10.1016/j.ssi.2005.09.025

    Article  CAS  Google Scholar 

  44. A. B. Yaroslavtsev, I. A. Stenina, and D. V. Golubenko, Pure Appl. Chem. 92, 1147 (2020). https://doi.org/10.1515/pac-2019-1208

    Article  CAS  Google Scholar 

  45. E. Y. Voropaeva, I. A. Stenina, and A. B. Yaroslavtsev, Russ. J. Inorg. Chem. 53, 1677 (2008). https://doi.org/10.1134/S0036023608110016

    Article  Google Scholar 

  46. A. B. Yaroslavtsev, I. A. Stenina, E. Yu. Voropaeva, et al., Polym. Adv. Technol. 20, 566 (2009). https://doi.org/10.1002/pat.1384

    Article  CAS  Google Scholar 

  47. D. V. Golubenko, Y. A. Karavanova, S. S. Melnikov, et al., J. Membr. Sci. 563, 777 (2018). https://doi.org/10.1016/j.memsci.2018.06.024

    Article  CAS  Google Scholar 

  48. E. Y. Safronova, I. A. Stenina, and A. B. Yaroslavtsev, Russ. J. Inorg. Chem. 55, 13 (2010). https://doi.org/10.1134/S0036023610010031

    Article  CAS  Google Scholar 

  49. W. Vielstich, Brennstoffelemente. Moderne Verfahren zur elektrochemischen Energlegewfnming (Verlag Chemie, Weinheim, 1965).

    Google Scholar 

  50. I. Petriev, P. Pushankina, I. Lutsenko, et al., Nanomaterials 10, 2081 (2020). https://doi.org/10.3390/nano10102081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. I. Petriev, P. Pushankina, Y. Glazkova, et al., Coatings 13, 621 (2023). https://doi.org/10.3390/coatings13030621

    Article  CAS  Google Scholar 

  52. A. Basov, S. Dzhimak, M. Sokolov, et al., Nanomaterials 12, 1164 (2022). https://doi.org/10.3390/nano12071164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. P. Pushankina, M. Baryshev, and I. Petriev, Nanomaterials 12, 4178 (2022). https://doi.org/10.3390/nano12234178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. I. S. Petriev, P. D. Pushankina, I. S. Lutsenko, et al., Tech. Phys. Lett. 47, 803 (2021). https://doi.org/10.1134/S1063785021080216

    Article  CAS  Google Scholar 

  55. Y. Xiong, W. Ye, W. Chen, et al., RSC Adv. 7, 5800 (2017). https://doi.org/10.1039/C6RA25900F

    Article  CAS  Google Scholar 

  56. L. Wang, J.-J. Zhai, K. Jiang, et al., Int. J. Hydrogen Energy 40, 1726 (2015). https://doi.org/10.1016/j.ijhydene.2014.11.128

    Article  CAS  Google Scholar 

  57. T. L. Ward and T. Dao, J. Membr. Sci. 153, 211 (1999). https://doi.org/10.1016/S0376-7388(98)00256-7

    Article  CAS  Google Scholar 

  58. Y. Baychtok and Y. Sokolinsky, J. Phys. Chem. 50, 1543 (1976).

    Google Scholar 

  59. D. A. Pacheco Tanaka, M. A. Llosa Tanco, J. Okazaki, et al., J. Membr. Sci. 320, 436 (2008). https://doi.org/10.1016/j.memsci.2008.04.044

    Article  CAS  Google Scholar 

  60. M. Nomura, K. Ono, S. Gopalakrishnan, et al., J. Membr. Sci. 251, 151 (2005). https://doi.org/10.1016/j.memsci.2004.11.008

    Article  CAS  Google Scholar 

  61. N. Itoh and W.-C. Xu, Appl. Catal. A: Gen. 107, 83 (1993). https://doi.org/10.1016/0926-860X(93)85117-8

    Article  CAS  Google Scholar 

  62. J. Okazaki, D. A. Pacheco Tanaka, M. A. Llosa Tanco, et al., J. Membr. Sci. 282, 370 (2006). https://doi.org/10.1016/j.memsci.2006.05.042

    Article  CAS  Google Scholar 

  63. A. Santucci, F. Borgognoni, M. Vadrucci, et al., J. Membr. Sci. 444, 378 (2013). https://doi.org/10.1016/j.memsci.2013.05.058

    Article  CAS  Google Scholar 

  64. X. Pan, M. Kilgus, and A. Goldbach, Catal. Today 104, 225 (2005). https://doi.org/10.1016/j.cattod.2005.03.049

    Article  CAS  Google Scholar 

  65. C. Zhao, A. Goldbach, and H. Xu, J. Membr. Sci. 542, 60 (2017). https://doi.org/10.1016/j.memsci.2017.07.049

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 21-72-00045; https://rscf.ru/project/21-72-00045/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Petriev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petriev, I.S., Pushankina, P.D. & Andreev, G.A. Investigation of Low-Temperature Hydrogen Permeability of Surface Modified Pd–Cu Membranes. Membr. Membr. Technol. 5, 360–369 (2023). https://doi.org/10.1134/S2517751623050074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751623050074

Keywords:

Navigation