Skip to main content
Log in

Low-Temperature Ion-Plasma Pretreatment of Fibrous Systems during Preparation of Composite Heterogeneous Membranes

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

An original method of obtaining cation exchange composite heterogeneous membranes involving the low-temperature ion-plasma pretreatment of fibrous systems is proposed. The membranes are obtained by the polycondensation filling of polymer composites via the synthesis and hardening of a strongly acidic sulfo cation exchanger on the surface and in the structure of a novolac phenol-formaldehyde fibrous system. The effect of low-temperature ion-plasma pretreatment on a change in the hydrophilicity, capillarity, and structure of heterogeneous cation exchange composite materials Polykon is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. P. K. Tewari, Nanocomposite. Membrane. Technology. Fundamentals and Applications (CRC Press, Boca Raton, FL, 2016).

    Google Scholar 

  2. Nanostructured Polymer Membranes, Ed. by P. M. Visakh and O. Nazarenko (Wiley, 2016).

    Google Scholar 

  3. Membranes Science and Technology Series, vol. 14 (Elsevier B.V., 2011).

  4. Advanced Membranes Science and Technology for Sustainable Energy and Environmental Applications, Ed. by Angelo Basile and Suzana Pereira Nunes (Woodhead Publishing Ltd., 2011).

    Google Scholar 

  5. Membranes Technology. A Practical Guide to Membrane Technology and Applications in Food and Bioprocessing (Elseveir Ltd., 2010).

  6. Advanced Membrane Technology and Application, Ed. by N. Li. Nerman, et al. (Wiley, 2008).

  7. P. Yu. Apel, S. Velizarov, A. V. Volkov, T. V. Eliseeva, V. V. Nikonenko, A. V. Parshina, N. D. Pismenskaya, K. I. Popov, and A. B. Yaroslavtsev, Membr. Membr. Technol. 4, 69 (2022).

    Article  CAS  Google Scholar 

  8. V. V. Sarapulova, V. D. Titorova, V. V. Nikonenko, and N. D. Pi’menskaya, Membr. Membr. Technol. 1, 168 (2019).

    Article  CAS  Google Scholar 

  9. V. Sarapulova, I. Shkorkina, S. Mareev, N. Pismenskaya, N. Kononenko, C. Larchet, L. Dammak, and V. Nikonenko, Membranes 9, 84 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. K. Garbassi, M. Morra, and E. Ochiello, Polymer Surfaces: From Physics to Technology, Revised and Updated Edition (Polymer Surfaces, New York, USA, 1994).

    Google Scholar 

  11. I. Osada, Vysokomol. Soed. 9, 1815 (1988).

    Google Scholar 

  12. Danmei Sun, in Biodegradable Green Composites, Ed. by Susheel Kalia, part 2 (2016). https://doi.org/10.1002/9781118911068.ch2

  13. Sanja Ercegović Ražić, Ružica, Čunko, Lorenzo Bautista, and Vili Bukošek, Proc. Eng. 200, 333 (2017).

    Article  Google Scholar 

  14. L. A. Can-Herrera, A. I. Oliva, and J. M. Cervantes-Uc, Polym Eng Sci. 62, 1608 (2022). https://doi.org/10.1002/pen.25949

    Article  CAS  Google Scholar 

  15. V. M. Elinson, V. V. Sleptsov, S. N. Dmitriev, and L. I. Kravets, Ion-plasma Modification of Polymer Track Membranes—Creation of New Materials for Microelectronics Technology [in Russian]. https://inis.iaea.org/collection/NCLCollectionStore/_Public/32/051/32051670.pdf.

  16. V. Kh. Abdullina and R. S. Davletbaev, Izv. Samar. Nauch. Ts. Ross. Akad. Nauk 12, 656 (2010).

    Google Scholar 

  17. E. A. Sergeeva, Yu. A. Bukina, and A. R. Ibatullina, Vest. Kazan. Tekhnol. Univ. 116 (2012).

  18. D. I. Fazylova, L. A. Zenitova, E. M. Shteinberg, and I. Sh. Abdullin, Vest. Kazan. Tekhnol. Univ. 52, 2011.

  19. E. A. Sergeeva, L. A. Zenitova, I. P. Ershov, and M. F. Shaekhov, Vest. Kazan. Tekhnol. Univ. 89 (2013).

  20. I. P. Ershov, E. A. Sergeeva, L. A. Zenitova, and I. Sh. Abdullin, Vest. Kazan. Tekhnol. Univ. 97 (2013).

  21. www.kynol.de/.

  22. M. M. Kardash and D. V. Terin, Membr. Membr. Technol. 2, 63 (2020).

    Article  CAS  Google Scholar 

  23. D. V. Terin, S. V. Tsylyaev, V. V. Cherkasov, and M. M. Kardash, Fibre Chem. 53, 434 (2022).

    Article  CAS  Google Scholar 

  24. M. M. Kardash, G. V. Aleksandrov, and Y. M. Vol’fkovich, Fibre Chem. 42, 308 (2011).

    Article  CAS  Google Scholar 

  25. Surface Science Instruments, Biolin Scientific. URL: www.biolinscientific.com (March 15, 2023)

  26. I. D. Strilets, M. M. Kardash, D. V. Terin, S. V. Tsyplyayev, and T. V. Druzhinina, Membr. Membr. Technol. 2, 325 (2020).

    Article  CAS  Google Scholar 

  27. S. Parvate, P. Dixit, and S. Chattopadhyay, J. Phys. Chem. B 124, 1323 (2020). https://doi.org/10.1021/acs.jpcb.9b08567

    Article  CAS  PubMed  Google Scholar 

  28. M. A. Ponomareva, G. R. Shrager, and V. A. Yakutenok, Vest. Tomsk State Univ. 1, 90 (2008).

Download references

ACKNOWLEDGMENTS

We are grateful to Cand. Phys.–Math. Sci., assistant professor Sinev Ilya Vladimirovich for the low-temperature ion-plasma treatment of fibrous systems.

Funding

This work was supported by the Russian Science Foundation within the framework of project no. 23-29-00346.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Kardash.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terin, D.V., Kardash, M.M., Turaev, T.A. et al. Low-Temperature Ion-Plasma Pretreatment of Fibrous Systems during Preparation of Composite Heterogeneous Membranes. Membr. Membr. Technol. 5, 257–265 (2023). https://doi.org/10.1134/S2517751623040066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751623040066

Keywords:

Navigation