Skip to main content
Log in

Synthesis and Properties of Polysulfones for Fabricating Porous Hollow-Fiber Membranes

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Polysulfones are synthesized in aprotic dipolar solvents, such as dimethylacetamide, N-methyl-2-pyrrolidone, and dimethyl sulfoxide, in a wide range of molecular weights from 42 000 to 184 000 g/mol for hollow-fiber membranes spinning for the first time. Dependence of the thermal and mechanical properties of polysulfones on molecular weight characteristics is investigated. A comparison of the mechanical properties of the synthesized PSF and commercial PSF Ultrason S 6010 (BASF, Germany) and PSF-150 (JSC Institute of Plastics, Russia) shows that the synthesized polymers are not inferior to their commercial analogs and some samples even surpass them in terms of the elastic modulus and strength. According to the dynamic viscosity of spinning solutions, promising PSF samples are chosen to form porous hollow-fiber supports. It is demonstrated that the hollow-fiber supports based on PSF with a molecular weight of 110 000 g/mol have a high nitrogen permeability of 47.5 m3/(m2 h bar). These supports show promise for casting composite membranes with a thin selective layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. W. Zularisam, A. F. Ismail, M. R. Salim, M. Sakinah, and O. Hiroaki, J. Membr. Sci. 299, 97 (2007).

    Article  CAS  Google Scholar 

  2. G. Makdissy, J. P. Croué, G. Amy, and H. Buisson, Water Sci. Technol.: Water Supply 4, 205 (2004).

    CAS  Google Scholar 

  3. Y. Kang, M. Obaid, J. Jang, M. H. Ham, and I. S. Kim, Chemosphere 207, 581 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Y. Koga, H. Fujieda, H. Meguro, Y. Ueno, T. Aoki, K. Miwa, and M. Kainoh, Artif. Organs 42, E246 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. T. V. Plisko, A. V. Bildyukevich, L. Zhao, W. Huang, V. V. Volkov, and Z. Huang, Fibers 9, 28 (2021).

    Article  CAS  Google Scholar 

  6. R. Sengur-Tasdemir, G. M. Urper-Bayram, T. Turken, E. Ates-Genceli, V. V. Tarabara, and I. Koyuncu, J. Water Proc. Eng. 42, 102100 (2021).

    Article  Google Scholar 

  7. Y.-G. Lim, C. Bak, and Y.-D. Kim, Chem. Eng. J. 433, 134616 (2022).

    Article  CAS  Google Scholar 

  8. S. Mansur, M. H. D. Othman, M. N. Z. Abidin, A. F. Ismail, S. H. S. Abdul Kadir, P. S. Goh, H. Hasbullah, B. C. Ng, M. S. Abdullah, and R. Mustafar, J. Environ. Chem. Eng. 9, 106141 (2021).

    CAS  Google Scholar 

  9. P. Peechmani, M. H. D. Othman, R. Kamaludin, M. H. Puteh, J. Jaafar, M. A. Rahman, A. F. Ismail, KadirS. H. S. Abdul, R. M. Illias, J. Gallagher, and S. M. Djuli, J. Environ. Chem. Eng. 9, 105873 (2021).

    Article  CAS  Google Scholar 

  10. I. Borisov, V. Vasilevsky, D. Matveev, A. Ovcharova, A. Volkov, and V. Volkov, Fibers 7, 11 (2019).

    Article  Google Scholar 

  11. I. Borisov, A. Ovcharova, D. Bakhtin, S. Bazhenov, A. Volkov, R. Ibragimov, R. Gallyamov, G. Bondarenko, R. Mozhchil, A. Bildyukevich, and V. Volkov, Fibers 5, 6 (2017).

    Article  Google Scholar 

  12. D. N. Matveev, K. A. Kutuzov, and V. P. Vasilevsky, Membr. Membr. Technol. 2, 351 (2020).

    Article  CAS  Google Scholar 

  13. A. V. Bildyukevich and V. V. Usosky, Pet. Chem. 54, 652 (2014).

    Article  CAS  Google Scholar 

  14. Zh. I. Kurdanova, Cand. Sci. (Chem.) Dissertation, 2017.

  15. V. V. Korshak and S. V. Vinogradova, Nonequilibrium Polycondensation (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  16. V. V. Shaposhnikova, Doctoral Sci. (Chem.) Dissertation, 2013.

  17. E. V. Kalugina, Doctoral Sci. (Chem.) Dissertation, 2013.

  18. Q. Xie, S. Zhang, Z. Hong, H. Ma, C. Liu, and W. Shao, Ind. Eng. Chem. Res. 57, 16464 (2018).

    Article  CAS  Google Scholar 

  19. Y. Thuyavan, N. Anantharaman, G. Arthanareeswaran, and A. F. Ismail, J. Chem. Technol. Biotechnol. 91, 2568 (2016).

    Article  CAS  Google Scholar 

  20. A. V. Bildyukevich, T. V. Plisko, and V. V. Usosky, Pet. Chem. 56, 379 (2016).

    Article  CAS  Google Scholar 

  21. D. Matveev, I. Borisov, V. Vasilevsky, G. Karpacheva, and V. Volkov, Membranes 12, 1257 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. E. A. Grushevenko, I. L. Borisov, D. S. Bakhtin, G. N. Bondarenko, I. S. Levin, and A. V. Volkov, React. Funct. Polym. 134, 156 (2019).

    Article  CAS  Google Scholar 

  23. E. A. Grushevenko, I. L. Borisov, A. A. Knyazeva, V. V. Volkov, and A. V. Volkov, Sep. Purif. Technol. 241, 116696 (2020).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was carried out using the equipment of the Shared Research Center Analytical Center of Deep Oil Processing and Petrochemistry, Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Funding

This study was supported by the Russian Science Foundation, grant no. 19-19-00647, https://rscf.ru/project/19-19-00647/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Borisov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisov, I.L., Matveev, D.N., Anokhina, T.S. et al. Synthesis and Properties of Polysulfones for Fabricating Porous Hollow-Fiber Membranes. Membr. Membr. Technol. 5, 218–225 (2023). https://doi.org/10.1134/S2517751623030022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751623030022

Keywords:

Navigation