Skip to main content
Log in

Chemical Stability of Hybrid Materials Based on Nafion® Membrane and Hydrated Oxides

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Improvement of the chemical stability of hybrid membranes based on perfluorosulfonic acid polymers is necessary to increase the lifetime of fuel cells. This article presents the results of the study of the transport properties and chemical stability of the hybrid Nafion® 212 membranes modified with nanoparticles of hydrated oxides SiO2, ZrO2, and TiO2 by in situ procedure. The influence of the nature of the dopant on the properties of the obtained materials is shown. The chemical degradation of the initial and hybrid membranes has been studied ex situ by treatment with Fenton’s reagent for 240 hours. The stability of materials increases in the series Nafion + SiO2 < Nafion + ZrO2 < Nafion < Nafion + TiO2. For the Nafion + TiO2 membrane the change in mass as a result of treatment with Fenton’s reagent is two times lower than for the initial Nafion membrane. This reveals an increase in the chemical stability of materials upon the incorporation of TiO2 nanoparticles due to their ability to bind free radicals. The maximum power of membrane-electrode assembly based on hybrid membranes containing TiO2 and SiO2 is higher than that based on Nafion® 212 by 7–10% at RH ~ 100% and t = 65°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. B. Agyekum, C. Nutakor, A. M. Agwa, and S. Kamel, Membranes 12, 173 (2022).

    Article  CAS  Google Scholar 

  2. S. P. Filippov and A. B. Yaroslavtsev, Russ. Chem. Rev. 90, 627 (2021).

    Article  Google Scholar 

  3. M. Yue, H. Lambert, E. Pahon, R. Roche, S. Jemei, and D. Hissel, Renew. Sustain. Energy Rev. 146, 111180 (2021).

    Article  Google Scholar 

  4. D. Yu. Voropaeva, S. A. Novikova, and A. B. Yaroslavtsev, Russ. Chem. Rev. 89, 1132 (2020).

    Article  CAS  Google Scholar 

  5. E. Yu. Safronova and A. B. Yaroslavtsev, Pet. Chem. 56, 281 (2016).

    Article  CAS  Google Scholar 

  6. S. Ahmad, T. Nawaz, A. Ali, M. F. Orhan, A. Samreen, and A. M. Kannan, Int. J. Hydrogen Energy 47, 19086 (2022).

    Article  CAS  Google Scholar 

  7. M. P. Rodgers, L. J. Bonville, H. R. Kunz, D. K. Slattery, and J. M. Fenton, Chem. Rev. 112, 6075 (2012).

    Article  CAS  Google Scholar 

  8. Y. Xing, H. Li, and G. Avgouropoulos, Materials 14, 2591 (2021).

    Article  CAS  Google Scholar 

  9. M. Chandesris, R. Vincent, L. Guetaz, J. S. Roch, D. Thoby, and M. Quinaud, Int. J. Hydrogen Energy 42, 8139 (2017).

    Article  CAS  Google Scholar 

  10. Y. Yang, X. Zhang, L. Guo, and H. Liu, J. Power Sources 477, 229021 (2020).

    Article  CAS  Google Scholar 

  11. P. Yu. Apel, S. Velizarov, A. V. Volkov, T. V. Eliseeva, V. V. Nikonenko, A. V. Parshina, N. D. Pismenskaya, K. I. Popov, and A. B. Yaroslavtsev, Membr. Membr. Technol. 4, 96 (2022).

    Article  Google Scholar 

  12. J. Wang, Appl. Energy 189, 460 (2017).

    Article  CAS  Google Scholar 

  13. S. R. Samms, S. Wasmus, and R. F. Savinell, J. Electrochem. Soc. 143, 1498 (1996).

    Article  CAS  Google Scholar 

  14. M. Feng, R. Qu, Z. Wei, L. Wang, P. Sun, and Z. Wang, Sci. Rep. 5, 9859 (2015).

    Article  CAS  Google Scholar 

  15. E. Safronova, D. Safronov, A. Lysova, A. Parshina, O. Bobreshova, G. Pourcelly, and A. Yaroslavtsev, Sensors Actuators 240, 1016 (2017).

    Article  CAS  Google Scholar 

  16. G. Alberti, R. Narducci, and M. Sganappa, J. Power Sources 178, 575 (2008).

    Article  CAS  Google Scholar 

  17. A. Alavijeh, S. Bhattacharya, O. Thomas, C. Chuy, Y. Yang, H. Zhang, and E. Kjeang, J. Power Sources 427, 207 (2019).

    Article  Google Scholar 

  18. M. B. Satterfield and J. B. Benziger, J. Polym. Sci. Part B 47, 11 (2009).

    Article  CAS  Google Scholar 

  19. D. S. Kudashova, N. A. Kononenko, M. A. Brovkina, and I. V. Falina, Membr. Membr. Technol. 4, 23 (2022).

    Article  CAS  Google Scholar 

  20. S. Mu, C. Xu, Q. Yuan, Y. Gao, F. Xu, and P. Zhao, J. Appl. Polym. Sci. 129, 1586 (2013).

    Article  CAS  Google Scholar 

  21. M. Danilczuk, F. D. Coms, and S. Schlick, J. Phys. Chem. B 113, 8031 (2009).

    Article  CAS  Google Scholar 

  22. L. Ghassemzadeh, T. J. Peckham, T. Weissbach, X. Luo, and S. Holdcroft, J. Am. Chem. Soc. 135, 15923 (2013).

    Article  CAS  Google Scholar 

  23. M. Zaton, J. Rozière, and D. J. Jones, Sustain. Energy Fuels 1, 409 (2017).

    Article  CAS  Google Scholar 

  24. D. E. Curtin, R. D. Lousenberg, T. J. Henry, P. C. Tangeman, and M. E. Tisack, J. Power Sources 131, 41 (2004).

    Article  CAS  Google Scholar 

  25. D. Kurniawan, H. Arai, S. Morita, and K. Kitagawa, Microchem. J. 106, 384 (2013).

    Article  CAS  Google Scholar 

  26. F. D. Coms, ECS Transactions 16, 235 (2008).

    Article  CAS  Google Scholar 

  27. L. Ghassemzadeh, K. D. Kreuer, J. Maier, and K. Muller, J. Power Sources 196, 2490 (2011).

    Article  CAS  Google Scholar 

  28. I. Stenina, D. Golubenko, V. Nikonenko, and A. Yaroslavtsev, Int. J. Mol. Sci. 21, 5517 (2020).

    Article  CAS  Google Scholar 

  29. Y. Prykhodko, K. Fatyeyeva, L. Hespel, and S. Marais, Chem. Eng. J. 127329 (2020).

  30. P. Trogadas, J. Parrondo, and V. Ramani, Chem. Comm. 47, 11549 (2011).

    Article  CAS  Google Scholar 

  31. S. Xiao, H. Zhang, C. Bi, Y. Zhang, Y. Ma, X. Li, H. Zhong, and Y. Zhang, J. Power Sources 195, 8000 (2010).

    Article  CAS  Google Scholar 

  32. M. Robert, A. El Kaddouri, J. C. Perrin, K. Mozet, J. Dillet, J. Y. Morel, and O. Lottin, Membranes 11, 366 (2021).

    Article  CAS  Google Scholar 

  33. A. Donnadio, R. D’Amato, F. Marmottini, G. Panzetta, M. Pica, C. Battocchio, D. Capitani, F. Ziarelli, and M. Casciola, J. Membr. Sci. 574, 17 (2019).

    Article  CAS  Google Scholar 

  34. V. Bogdanovskaya, I. Vernigor, M. Radina, V. Andreev, and O. Korchagin, Catalysts 11, 335 (2021).

    Article  CAS  Google Scholar 

  35. P. A. Yurova, V. R. Malakhova, E. V. Gerasimova, I. A. Stenina, and A. B. Yaroslavtsev, Polymer 13, 2513 (2021).

    Article  CAS  Google Scholar 

  36. D. V. Golubenko, R. R. Shaydullin, and A. B. Yaroslavtsev, Colloid Polym. Sci. 297, 741 (2019).

    Article  CAS  Google Scholar 

  37. K. Backfolk, R. Holmes, P. Ihalainen, P. Sirvio, and N. Triantafillopoulos, J. Peltonen, Polym. Test. 26, 1031 (2007).

    Article  CAS  Google Scholar 

  38. A. Kusoglu and A. Z. Weber, Chem. Rev. 117, 987 (2017).

    Article  CAS  Google Scholar 

  39. A. Kirt, KevinM. Page, and A. Cable, and R. B. Moore, Macromolecules 38, 6472 (2005).

    Google Scholar 

  40. I. A. Prikhno, E. Yu. Safronova, I. A. Stenina, P. A. Yurova, and A. B. Yaroslavtsev, Membr. Membr. Technol. 2, 265 (2020).

    Article  CAS  Google Scholar 

  41. S. Ban, C. Huang, X.-Z. Yuan, and H. Wang, J. Phys. Chem. B 115, 11352 (2011).

    Article  CAS  Google Scholar 

  42. K. E. Yorov, I. V. Kolesnik, I. P. Romanova, Y. B. Mamaeva, N. A. Sipyagina, S. A. Lermontov, G. P. Kopitsa, A. E. Baranchikov, and V. K. Ivanov, J. Supercrit. Fluids 169, 105099 (2021).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Transmission electron microscopy studies were carried out using the equipment of the Center for Collective Use of the Institute of Organic Chemistry of the Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation (grant no. 21-73-10149), https://rscf.ru/project/21-73-10149.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Safronova.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safronova, E.Y., Korchagin, O.V., Bogdanovskaya, V.A. et al. Chemical Stability of Hybrid Materials Based on Nafion® Membrane and Hydrated Oxides. Membr. Membr. Technol. 4, 414–422 (2022). https://doi.org/10.1134/S2517751622060087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751622060087

Keywords:

Navigation