Skip to main content
Log in

Composite Track Membrane Produced by Roll Technology of Magnetron Sputtering of Titanium Nanolayer

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The possibility of obtaining a composite track membrane (TM) is investigated. The TM surface was modified by the method of planar magnetron deposition of titanium. The parameters of the magnetron installation operation, such as the deposition rate, the working pressure in the chamber and the magnetron current, have been optimized. The features of the structure and morphology of the 80 nm thick titanium layer have been studied using a combination of methods such as atomic force microscopy, scanning and transmission electron microscopy. X-ray photoelectron spectroscopy revealed that the titanium nanosheet has a complex composition including titanium, titanium oxide, titanium nitride and titanium carbide. The Scratch test showed high adhesion of Ti to TM, which is associated with the formation of an interfacial layer of titanium carbide. It is established that magnetron deposition of Ti does not worsen the operational parameters of TM and reduces the marginal angle of water wetting to a value of about 33° ± 2°. Study of survival and growth rate of fibroblasts of Chinese hamster (V79 line) on PET TM and PET TM with Ti, a slight decrease in the survival rate of fibroblasts on metallized membranes was shown. Titanium sputtering suppresses autofluorescence of the TM surface, which makes it possible to use PET TM with Ti as a substrate for microscopic examination of fluorescent biological objects both in vivo and in vitro. The resulting PET TM with Ti can be used as the basis of skin prostheses and membrane-sorption materials of a new generation. The conducted studies show that magnetron sputtering is a promising approach to the manufacture of metal polymer membrane material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. P. Y. Apel, Radiat. Meas. 34, 559 (2001).

    Article  CAS  Google Scholar 

  2. P. Y. Apel, Encyclopedia of Membrane Science and Technology (John Wiley & Sons, Inc., Hoboken, N.J., USA, 2013).

    Google Scholar 

  3. M. Ulbricht, Polymer (Guildf) 47, 2217 (2006).

    Article  CAS  Google Scholar 

  4. A. V. Sergeev, E. V. Khataibe, V. V. Berezkin, A. N. Nechaev, B. V. Mchedlishvili, I. P. Chikhacheva, and V. P. Zubov, Colloid J. 65, 84 (2003).

    Article  CAS  Google Scholar 

  5. V. A. Pronin, V. G. Gornov, A. V. Lipin, P. A. Loboda, B. V. Mchedlishvili, A. N. Nechaev, and A. V. Sergeev, Tech. Phys. 46, 1444 (2001). https://doi.org/10.1134/1.1418510

    Article  CAS  Google Scholar 

  6. M. Yoshida, M. Asano, H. Omichi, R. Spohr, and R. Katakai, Radiat. Meas. 28, 799 (1997).

    Article  CAS  Google Scholar 

  7. S. N. Dmitriev, L. I. Kravets, V. V. Sleptsov, V. M. Elinson, V. V. Potryasai, and O. L. Orelovich, Nucl. Instr. Methods Phys. Res. Sect. B 171, 448 (2000).

    Article  CAS  Google Scholar 

  8. A. Bogaerts, E. Neyts, R. Gijbels, and J. van der Mullen, Spectrochim. Acta Part B 57, 609 (2002).

    Article  Google Scholar 

  9. A. Rossouw, Department of Electrical and Electronic Engineering University of Stellenbosch, 2013.

  10. O. V. Artoshina, A. N. Nechaev, P. Yu. Apel, L. Petrik, W. J. Perold, and C. A. Pineda-Vargas, Exotic Nuclei 14, 591 (2015).

    Google Scholar 

  11. O. V. Artoshina, V. K. Semina, Y. K. Kochnev, A. N. Nechaev, P. Y. Apel, F. O. Milovich, L. D. Iskhakova, R. P. Ermakov, A. Rossouw, and B. L. Gorberg, Inorg. Mater. 52, 945 (2016).

    Article  CAS  Google Scholar 

  12. O. V. Artoshina, V. K. Semina, A. N. Nechaev, P. Y. Apel, and A. Rossouw, Pet. Chem. 55, 759 (2015).

    Article  CAS  Google Scholar 

  13. S. N. Dmitriev, L. I. Kravets, and V. V. Sleptsov, Nucl. Instr. Methods Phys. Res. Sect B 142, 43 (1998).

    Article  CAS  Google Scholar 

  14. Tao Meng, Rui Xie, Yong-Chao Chen, Chang-Jing Cheng, Peng-Fei Li, Xiao-Jie Ju, and Liang-Yin Chu, J. Memb. Sci. 349, 258 (2010).

    Article  CAS  Google Scholar 

  15. A. Hiroki, M. Asano, T. Yamaki, and M. Yoshida, Chem. Phys. Lett. 406, 188 (2005).

    Article  CAS  Google Scholar 

  16. M. Toufik, A. Mas, V. Shkinev, A. Nechaev, A. Elharfi, and F. Schue, Eur. Polym. J. 38, 203 (2002).

    Article  CAS  Google Scholar 

  17. A. A. Mashentseva, T. G. Khasen, V. A. Krasnov, A. T. Zhumazhanova, and M. T. Kasymzhanov, Vestnik NYaTs RK 1, 5 (2020).

    Google Scholar 

  18. I. V. Korolkov, A. A. Mashentseva, O. Güven, Y. G. Gorin, and M. V. Zdorovets, Radiat. Phys. Chem. 151, 141 (2018).

    Article  CAS  Google Scholar 

  19. E. O. Bosykh, V. V. Sohoreva, and V. F. Pichugin, Pet. Chem. 54, 267 (2014).

    Article  CAS  Google Scholar 

  20. D. Fink, J. Rojas-Chapana, A. Petrov, H. Tributsch, D. Friedrich, U. Kuppers, M. Wilhelm, P. Yu. Apel, and A. Zrinehd, Sol. Energy Mater. Sol. Cells 90, 1458 (2006).

    Article  CAS  Google Scholar 

  21. O. A. Alisienok, V. E. Shidlovskaya, E. B. Mel’nikova, A. L. Kozlovskii, M. V. Zdorovets, M. D. Kutuzov, E. E. Shumskaya, and E. Yu. Kanyukov, Proceedings of the VIII International Scientific Conference on Actual Problems of Solid State Physics, 2018, p. 206.

  22. Y. G. Shen, Y. W. Mai, Q. C. Zhang, D. R. McKenzie, W. D. McFall, and W. E. McBride, J. Appl. Phys. 87, 177 (2000).

    Article  CAS  Google Scholar 

  23. KumariT. Prasanna, RajaM. Manivel, Kumar. Atul, S. Srinath, and S. V. Kamat, J. Magn. Magn. Mater. 365, 93 (2014).

    Article  CAS  Google Scholar 

  24. A. I. Maksimov, Khim. Volokna 36, 22 (2004).

    Google Scholar 

  25. N. Khlebnikov, E. Polyakov, S. Borisov, N. Barashev, E. Biramov, A. Maltceva, E. Vereshchagin, S. Khartov, and A. Voronin, Jpn. J. Appl. Phys. 55, AG02 (2016).

    Article  CAS  Google Scholar 

  26. S. C. Park, S. S. Yoon, and J. D. Nam, Thin Solid Films 516, 3028 (2008).

    Article  CAS  Google Scholar 

  27. L. I. Kravets, A. B. Gilman, M. Yu. Yablokov, V. M. Elinson, B. Mitu, and G. Dinescu, Russ. J. Electrochem. 49, 680 (2013).

    Article  CAS  Google Scholar 

  28. K. Seshan, Handbook of Thin Film Deposition: Techniques, Processes, and Technologies, 3rd Ed. (2012).

    Google Scholar 

  29. B. L. Gorberg, A. A. Ivanov, O. V. Mamontov, and V. A. Stegnin, RF Patent RU2 555 264, Byull. Izobret., No. 19 (2006).

  30. T. Tsuchiya, M. Hirata, and N. Chiba, Thin Solid Films 484, 245 (2005).

    Article  CAS  Google Scholar 

  31. V. Chawla, R. Jayaganthan, A. K. Chawla, and R. Chandra, J. Mater. Process. Technol. 209, 3444 (2009).

    Article  CAS  Google Scholar 

  32. P. Y. Apel and S. N. Dmitriev, Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 013002 (2011).

    Article  CAS  Google Scholar 

  33. B. L. Gorberg, A. Ivanov, O. Mamontov, V. A. Stegnin, and V. Titov, Russ. J. Gen. Chem. 83, 157 (2013).

    Article  CAS  Google Scholar 

  34. O. V. Artoshina, A. Rossouw, V. K. Semina, A. N. Nechaev, and P. Yu. Apel’, Pet. Chem. 55, 759 (2015). https://doi.org/10.1134/S0965544115100011

    Article  CAS  Google Scholar 

  35. A. Solovieva, V. Timofeeva, N. Erina, G. Vstovsky, A. Krivandin, O. V. Shatalova, P. Apel, B. Mchedlishvili, and S. Timashev, Colloid J. 67, 217 (2005).

    Article  CAS  Google Scholar 

  36. F. Dinelli, Polymer (Guildf) 41, 4285 (2000).

    Article  CAS  Google Scholar 

  37. J. P. Blazquez, E. Arzt, and A. Campo, Plasma Process. Polym. 8, 876 (2011).

    Article  CAS  Google Scholar 

  38. M. Biesinger, L. Lau, A. Gerson, and R. Smart, Appl. Surf. Sci. Elsevier 257, 887 (2010).

    Article  CAS  Google Scholar 

  39. E. Lewin, P. Persson, M. Lattemann, M. Stuber, M. Gorgoi, A. Sandell, C. Ziebert, F. Schafers, W. Braun, J. Halbritter, S. Ulrich, W. Eberhardt, L. Hultman, H. Siegbahn, S. Svensson, and U. Jansson, Surf. Coatings Technol. 202, 3563 (2008).

    Article  CAS  Google Scholar 

  40. R. E. Kesting, Synthetic Polymeric Membranes: A Structural Perspective, 2nd Ed. (Wiley-Interscience, 1985).

    Google Scholar 

  41. R. Janssen, Deformation and Failure in Semi-Crystalline Polymer Systems (Strain, 2002).

  42. B. Sartowska, W. Starosta, P. Apel, O. Orelovitch, and I. Blonskay, Acta Phys. Pol. A 123, 819 (2013).

    Article  CAS  Google Scholar 

  43. L. Kravets, S. Dmitriev, V. Sleptsov, and V. M. Elinson, Desalination 144, 27 (2002).

    Article  CAS  Google Scholar 

  44. L. G. Molokanova, Yu. K. Kochnev, A. Nechaev, S. N. Chukova, and P. Apel, High Energy Chem. 51, 182 (2017).

    Article  CAS  Google Scholar 

  45. L. Kravets, S. Dmitriev, G. Dinescu, A. Lazea, V. Satulu, Plasma Proc. Polym. 6, 796 (2009).

    Article  CAS  Google Scholar 

  46. V. V. Beriozkin, D. Zagorsky, A. Nechaev, T. V. Tsiganova, N. Mitrofanova, P. Apel, and B. Mchedlishvili, Radiat. Meas. 34, 593 (2001).

    Article  CAS  Google Scholar 

  47. S. N. Akimenko, T. I. Mamonova, O. L. Orelovich, Ya. Maekava, M. Ioshida, and P. Yu. Apel’, Krit. Tekhnol. Membr. 12, 187 (2002).

    Google Scholar 

  48. O. Pereao, C. Uche, I. I. Vinogradov, A. N. Nechaev, B. Opeolu, and L. Petrik, Mater. Today Chem. 20, 100416 (2021).

    Article  CAS  Google Scholar 

  49. I. I. Vinogradov, P. S. Eremin, A. V. Poddubikov, I. R. Gil’mutdinova, and A. N. Nechaev, Biotekhnologiya 37, 55 (2021).

    Article  Google Scholar 

  50. I. I. Vinogradova, L. Petrik, G. V. Serpionov, and A. N. Nechaev, Membr. Membr. Technol. 3, 400 (2021).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Dr. Sci. (Chem.) P. Yu. Apel’ for significant comments and advice in planning and conducting the study and O.L. Orelovich for SEM micrographs of the sample surfaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Vinogradov.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnoux Rossouw, Vinogradov, I.I., Serpionov, G.V. et al. Composite Track Membrane Produced by Roll Technology of Magnetron Sputtering of Titanium Nanolayer. Membr. Membr. Technol. 4, 177–188 (2022). https://doi.org/10.1134/S2517751622030039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751622030039

Keywords:

Navigation