Skip to main content
Log in

Investigation of the Diethylamine Producing Process from its Salt by Bipolar Electrodialysis

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The effect of solutions concentrations located on both sides of the aMB-2m bipolar membrane during the production of diethylamine and sulfuric acid from diethylammonium sulfate on the frequency spectra of the electrochemical impedance of the aMB-2m bipolar membrane and on the current-voltage characteristic of the Ralex AMH membrane is investigated. The concentrations of the solutions have hardly any effect on the impedance of the aMB-2m membrane and significantly affect the current–voltage characteristic of the Ralex AMH membrane. The technical and economic characteristics of the electromembrane process of producing diethylamine and sulfuric acid from diethylammonium sulfate have been determined. The use of a modified aMB-2m bipolar membrane combined with a Ralex AMH heterogeneous anion-exchange membrane in an electrodialyzer provides the producing of diethylamine and sulfuric acid solutions with a concentration of about 0.5 and 0.9 mol-eq/L, respectively, from 0.5 mol-eq/L of diethylammonium sulfate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. S. A. Mazunin and V. L. Chechulin, Russ. J. Appl. Chem. 83, 1690 (2010).

    Article  CAS  Google Scholar 

  2. G. I. Grin’, V. V. Panasenko, L. N. Bondarenko, T. V. Fedorchenko, A. L. Sincheskul, D. N. Deyneka, and S. Yu. Adamenko, Trudy BGTU 3, 115 (2016).

    Google Scholar 

  3. A. N. Bobokulov, A. U. Erkayev, and Z. K. Toirov, Universum: Khim. Biol. 10, 40 (2017). https://7universum.com/ru/nature/archive/item/5168

  4. A. V. L’vov, M. Ya. Fioshin, G. S. Solov’ev, S. A. Krasheninnikov, T. S. Gref, A. V. Beglova, D. Shiller, B. A. Il’in, V. N. Antipov, V. S. Bovven, L. I. Yurkov, A. I. Rodionov, A. E. Presnov, V. N. Barybin, B. S. Remorov, N. F. Osetrov, and I. I. Kasatkina, USSR No. 1047835, Bull. Izobret. No. 38 (1983).

  5. V. J. Frilette, J. Phys. Chem. 60, 435 (1956).

    Article  CAS  Google Scholar 

  6. P. K. Nagasubramanian, F. P. Chlanda, and K. J. Liu, J. Membr. Sci. 2, 109 (1977).

    Article  CAS  Google Scholar 

  7. V. P. Greben’, N. Ya. Pivovarov, N. Ya. Kovarskii, and G. Z. Nefedova, Zh. Fiz. Khim. 52, 2641 (1978).

    Google Scholar 

  8. R. Simons, J. Membr. Sci. 78, 13 (1993).

    Article  CAS  Google Scholar 

  9. A. J. B. Ed. Kemperman, Handbook on Bipolar Membrane Technology (Twente University Press, Enschede, 2000).

    Google Scholar 

  10. G. Pourcelly, Russ. J. Electrochem. 38, 919 (2002).

    Article  CAS  Google Scholar 

  11. N. V. Sheldeshov and V. I. Zabolotsky, in Membranes and Membrane Technologies, Ed. by A. B. Yaroslavtsev (Nauchnyi Mir, Moscow, 2013) [in Russian].

    Google Scholar 

  12. H. Strathmann, A. Grabowski, and G. Eigenberger, Ind. Eng. Chem. Res. 52, 10364 (2013).

    Article  CAS  Google Scholar 

  13. Y. Tanaka, Ion Exchange Membranes. Fundamentals and Applications, 2nd Edition (Elsevier Science, 2015).

    Google Scholar 

  14. M. A. Brikenshtein, K. I. Kryshchenko, V. N. Tsarev, and O. N. Efimov, Khim. Prom. 3, 178 (1975).

    Google Scholar 

  15. Y. Chang, J. Appl. Electrochem. 9, 731 (1979).

    Article  CAS  Google Scholar 

  16. V. P. Greben’, N. Ya. Pivovarov, A. T. Chetverikova, and I. G. Rodzik, Zhurn. Prikl. Khim. 66, 574 (1993).

    Google Scholar 

  17. M. T. De Groot, R. M. de Rooij, A. A. C. M. Bos, and G. Bargeman, J. Membr. Sci. 378, 415 (2011).

    Article  CAS  Google Scholar 

  18. T. Xu and C. Huang, AIChE J. 54, 3147 (2008).

    Article  CAS  Google Scholar 

  19. Ch. Jiang, Sh. Li, D. Zhang, Zh. Yang, D. Yu, X. Chen, Y. Wang, and T. Xu, Chem. Eng. J. 360, 654 (2019).

    Article  CAS  Google Scholar 

  20. N. V. Kovalev, T. V. Karpenko, N. V. Shel’deshov, and V. I. Zabolotskii, Membr. Membr. Technol. 3, 231 (2021).

    Article  CAS  Google Scholar 

  21. N. V. Sheldeshov, V. I. Zabolotskii, N. D. Pis’menskaya, and N. P. Gnusin, Sov. Electrochem. 22, 189 (1986).

    Google Scholar 

  22. N. V. Sheldeshov, V. I. Zabolotskii, A. V. Bespalov, N. V. Kovalev, N. V. Alpatova, A. V. Akimova, T. V. Mochalova, V. I. Kovaleva, and A. Yu. Boyarishcheva, Petr. Chem. 57, 518 (2017).

    Article  CAS  Google Scholar 

  23. N. V. Sheldeshov, V. I. Zabolotskii, T. V. Karpenko, and N. V. Kovalev, Membr. Membr. Technol. 2, 189 (2020).

    Article  CAS  Google Scholar 

  24. V. V. Umnov, N. V. Shel’deshov, and V. I. Zabolotskii, Russ. J. Electrochem. 35, 411 (1999).

    CAS  Google Scholar 

  25. V. I. Zabolotskii and V. V. Nikonenko, Ion Transport in Membranes (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  26. N. V. Sheldeshov, V. I. Zabolotsky, N. V. Kovalev, and T. V. Karpenko, Sep. Purif. Technol. 241, 116648 (2020).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-38-90116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Karpenko.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpenko, T.V., Kovalev, N.V., Sheldeshov, N.V. et al. Investigation of the Diethylamine Producing Process from its Salt by Bipolar Electrodialysis. Membr. Membr. Technol. 4, 59–68 (2022). https://doi.org/10.1134/S2517751622010048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751622010048

Keywords:

Navigation