Skip to main content
Log in

Butanol-1 Dehydration via Pervaporation Using Membranes Based on Thermally Rearranged Polymer

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The process of dehydration of n-butanol as one of the most used solvents and a biofuel base has been studied by a membrane separation method with the use of vacuum pervaporation. Nonporous diffusion membranes based on a thermally rearranged polymer and its hydrolytically stable prepolymer have been selected as the objects of the research. The main physicochemical parameters of the membranes, such as contact angles, surface tension, membrane density, and the results of sorption tests, are reported. Transport properties of the membranes have been studied for separation the water–n-butanol mixture with the water content in the mixture varied from 10 to 75 wt %. It has been shown that thermal rearrangement of the polymers leads to structure compacting and to more selective penetration of water molecules through the polymer matrix, thereby facilitating effective removal of water impurities from n-butanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. W. Baker, Membrane Technology and Applications, 3rd Ed. (Wiley, Chichester, 2012).

    Book  Google Scholar 

  2. P. D. Chapman, T. Oliveira, A. G. Livingston, and K. Li, J. Membr. Sci. 318, 5 (2008).

    Article  CAS  Google Scholar 

  3. C. Abels, F. Carstensen, and M. Wessling, J. Membr. Sci. 444, 285 (2013).

    Article  CAS  Google Scholar 

  4. X. Feng and R. Y. M. Huang, Ind. Eng. Chem. Res. 36, 1048 (1997).

    Article  CAS  Google Scholar 

  5. I. Mellan, Industrial Solvents (Van Nostrand Reinhold, New York, 1950).

    Google Scholar 

  6. A. K. Doolittle, The Technology of Solvents and Plasticizers (Wiley, New York, 1954).

    Google Scholar 

  7. J. A. Monich, Alcohols: Their Chemistry, Properties, and Manufacture (Chapman and Reinhold, New York, 1968).

    Google Scholar 

  8. L. M. Vane, J. Chem. Technol. Biotechnol. 80, 603 (2005).

    Article  CAS  Google Scholar 

  9. B. Bolto, M. Hoang, and Z. L. Xie, Chem. Eng. Process. 50, 227 (2011).

    Article  CAS  Google Scholar 

  10. R. W. Baker, J. Membr. Sci. 362, 134 (2010).

    Article  CAS  Google Scholar 

  11. G. S. Golubev, I. L. Borisov, and V. V. Volkov, Pet. Chem. 58, 975 (2018).

    Article  CAS  Google Scholar 

  12. K. Zhang, L. Li, W. Yu, et al., J. Wuhan Univ. Technol.—Mater. Sci. Ed. 33, 312 (2018).

    CAS  Google Scholar 

  13. K. Y. Jee, N. Kim, and Y. T. Lee, J. Ind. Eng. Chem. 44, 155 (2016).

    Article  CAS  Google Scholar 

  14. I. L. Borisov, A. O. Malakhov, V. S. Khotimsky, et al., J. Membr. Sci. 466, 322 (2014).

    Article  CAS  Google Scholar 

  15. K. R. Lee, Y. Wang, M.-Y. Teng, et al., Eur. Polym. J. 35, 861 (1999).

    Article  CAS  Google Scholar 

  16. N. V. Avagimova, A. M. Toikka, and G. A. Polotskaya, Pet. Chem. 55, 276 (2015).

    Article  CAS  Google Scholar 

  17. Y. Wang, S. H. Goh, T. Sh. Chung, and P. Na, J. Membr. Sci. 326, 222 (2009).

    Article  CAS  Google Scholar 

  18. W. Fen Yong, P. Salehian, L. Zhang, and T. Sh. Chung, J. Membr. Sci. 523, 430 (2017).

    Article  Google Scholar 

  19. N. Widjojo and T. Sh. Chung, Chem. Eng. J. 155, 736 (2009).

    Article  CAS  Google Scholar 

  20. M. P. Sokolova, M. A. Smirnov, P. Geydt, et al., Polymers 8, 1 (2016).

    Article  Google Scholar 

  21. Y. M. Xu and T. Sh. Chung, J. Membr. Sci. 531, 16 (2017).

    Article  CAS  Google Scholar 

  22. Y. K. Ong, H. Wang, and T. Sh. Chung, Chem. Eng. Sci. 79, 41 (2012).

    Article  CAS  Google Scholar 

  23. A. Yu. Pulyalina, G. A. Polotskaya, V. A. Rostovtseva, et al., Pet. Chem. 57, 318 (2017).

    Article  CAS  Google Scholar 

  24. C. Hamciuc, E. Hamciuc, M. Bruma, and N. M. Belomoina, Eur. Polym. J. 32, 837 (1996).

    Article  CAS  Google Scholar 

  25. S. Padma, V. Mahadevan, and M. Srinivasan, J. Polym. Sci. 26, 195 (1988).

    Article  CAS  Google Scholar 

  26. Y. Ong, G. M. Shi, N. L. Le, et al., Prog. Polym. Sci. 57, 1 (2016).

    Article  CAS  Google Scholar 

  27. M. Ya. Goikhman, I. V. Gofman, L. Yu. Tikhonova, et al., Polym. Sci., Ser. A 39, 117 (1997).

    Google Scholar 

  28. A. Pulyalina, G. Polotskaya, M. Goikhman, et al., J. Appl. Polym. Sci. 130, 4024 (2013).

    CAS  Google Scholar 

  29. N. Avagimova, G. Polotskaya, A. Toikka, et al., J. Appl. Polym. Sci. 135, 46320 (2018).

    Article  Google Scholar 

  30. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci. 13, 1741 (1969).

    Article  CAS  Google Scholar 

  31. A. A. Tager, Physical Chemistry of Polymers, 4th Ed. (Nauchnyi Mir, Moscow, 2007).

    Google Scholar 

  32. T. M. Aminabhavi, M. B. Patil, S. D. Bhat, et al., J. Appl. Polym. Sci. 113, 966 (2009).

    Article  CAS  Google Scholar 

  33. A. A. Askadskii, Lectures of Physico-Chemistry of Polymers (Nova Science, New York, 2003).

    Google Scholar 

  34. Z. Pientka, L. Brozova, A. Pulyalina, et al., Macromol. Chem. Phys. 214, 2867 (2013).

    Article  CAS  Google Scholar 

  35. A. A. Askadskii, Computational Materials Science of Polymers (Cambridge International Science, Cambridge, 2001).

    Google Scholar 

  36. Y. M. Xu, N. L. Le, J. Zuo, and T. Sh. Chung, J. Membr. Sci. 499, 317 (2016).

    Article  CAS  Google Scholar 

  37. L. Ye, L. Wang, X. Jie, et al., J. Membr. Sci. 573, 21 (2019).

    Article  CAS  Google Scholar 

  38. J. M. Sorensen and W. Arlt, DECHEMA Chemistry Data Series, vol. V: Liquid–Liquid Equilibrium Data Collection, part 1: Binary Systems (DECHEMA, Frankfurt, 1981).

  39. Y. K. Ong, H. Wang, and T. S. Chung, Chem. Eng. Sci. 79, 41 (2012).

    Article  CAS  Google Scholar 

  40. R. Kreiter, D. P. Wolfs, and Ch. W. R. Engelen, J. Membr. Sci. 319, 126 (2008).

    Article  CAS  Google Scholar 

  41. K.-R. Lee, Y. H. Wang, M. Y. Teng, et al., Eur. Polym. J. 35, 861 (1999).

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, grant no. 18-79-10 116.

Author information

Authors and Affiliations

Authors

Contributions

A.Yu. Pulyalina, I.I. Faykov, and G.A. Polotskaya studied the physical parameters of polymer membranes and evaluated the separation properties in the pervaporation processes; they prepared the results and discussion section as well as the text of the manuscript. V.P. Nesterova participated in the sorption and pervaporation experiments and in the preparation of the manuscript. I.V. Podeshvo synthesized polymers for the subsequent formation of polymer films.

Corresponding author

Correspondence to A. Yu. Pulyalina.

Ethics declarations

The authors declare no conflict of interest for this article.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pulyalina, A.Y., Faykov, I.I., Nesterova, V.P. et al. Butanol-1 Dehydration via Pervaporation Using Membranes Based on Thermally Rearranged Polymer. Membr. Membr. Technol. 1, 298–305 (2019). https://doi.org/10.1134/S251775161905007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S251775161905007X

Keywords:

Navigation