Skip to main content
Log in

Diffusion Transport of Water and Methanol Vapors in Polyvinyltrimethylsilane

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The specifics of diffusion of water and methanol vapors in nonporous polymer films based on polyvinyltrimethylsilane (PVTMS) have been studied. The vapor diffusion coefficients have been determined by measuring the kinetics of unsteady flow through the membrane (differential method) and subsequent processing the results by functional scaling . The kinetic curves have been found to deviate from those described by classical Fick’s law. It has been theoretically shown that such deviations can be due to the formation of associates of penetrant molecules inside the membrane, and a modified method for calculating diffusion coefficients has been proposed for this case. The behavior of the diffusion coefficients of water and methanol vapors in PVTMS in the temperature range of 50–90°C and the vapor activity range of 0.3–0.9 has been studied. The activation energies of diffusion of water and methanol vapors in PVTMS have been determined to be 23 and 44 kJ/mol, respectively, and the effective kinetic diameters of the molecules have been calculated to be 0.29 and 0.37 nm, respectively. The proposed approach opens the possibility for systematic studies of the diffusion kinetics of vapors of different organic compounds with an assessment of their kinetic contribution to the membrane permselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. B. Bolto, M. Hoang, and Z. Xie, Water Res. 46, 259 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. L. Wang, J.-P. Corriou, C. Castel, and E. Favre, J. Membr. Sci. 383, 170 (2011).

    Article  CAS  Google Scholar 

  3. M. M. Trubyanov, P. N. Drozdov, A. A. Atlaskin, et al., J. Membr. Sci. 530, 53 (2017).

    Article  CAS  Google Scholar 

  4. O. V. Malykh, A. Yu. Golub, and V. V. Teplyakov, Adv. Colloid Interface Sci. 164, 89 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. J.-P. Corriou, C. Fonteix, and E. Favre, AIChE J. 54, 1224 (2008).

    Article  CAS  Google Scholar 

  6. I. N. Beckman, M. G. Shalygin, and V. V. Tepliakov, Mass Transfer in Chemical Engineering Processes, Ed. by J. Markoš (InTech, Rijeka, 2011) p. 205.

    Google Scholar 

  7. H. A. Daynes, Proc. R. Soc. London, A 97, 286 (1920).

    Article  CAS  Google Scholar 

  8. I. Tkachenko, N. A. Belov, Y. V. Yakovlev, et al., Mater. Chem. Phys. 183, 279 (2016).

    Article  CAS  Google Scholar 

  9. N. A. Belov, R. Y. Nikiforov, M. V. Bermeshev, et al., Pet. Chem. 57, 923 (2017).

    Article  CAS  Google Scholar 

  10. H. Wu, B. Kruczek, and J. Thibault, J. Membr. Sci. Res. 4, 4 (2018).

    CAS  Google Scholar 

  11. I. N. Beckman, Calculus: Mathematical Apparatus of Diffusion: A Textbook for Undergraduate and Graduate Programs, 2nd Ed. (Yurait, Moscow, 2018) [in Russian].

    Google Scholar 

  12. S. J. Harley, E. A. Glascoe, and R. S. Maxwell, J. Phys. Chem. B 116, 14183 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. V. V. Teplyakov, M. G. Shalygin, A. A. Kozlova, and A. I. Netrusov, Pet. Chem. 58, 949 (2018).

    Article  CAS  Google Scholar 

  14. V. V. Teplyakov and P. Meares, Gas Sep. Purif. 4, 68 (1990).

    Article  Google Scholar 

  15. V. V. Teplyakov, O. V. Malykh, O. L. Amosova, et al., Functional database of parameters for permeation of permanent and acid gases, lower hydrocarbons, and toxic gaseous pollutants through polymer materials and membranes with a function of computational assessment of quantities for which no data are available, Certificate No. 2 011 620 549 (2011).

  16. A. A. Kozlova, M. G. Shalygin, and V. V. Teplyakov, Int. J. Membr. Sci. Technol. 3, 56 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Shalygin.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalygin, M.G., Kozlova, A.A., Syrtsova, D.A. et al. Diffusion Transport of Water and Methanol Vapors in Polyvinyltrimethylsilane. Membr. Membr. Technol. 1, 183–189 (2019). https://doi.org/10.1134/S2517751619030053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751619030053

Keywords:

Navigation