Skip to main content
Log in

Green Synthesis of Silver Nanoparticles with the Tobacco Mosaic Virus

  • RESEARCH ARTICLE
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

The tobacco mosaic virus was used as a stabilizer and reductant for silver nanoparticles. The conditions for obtaining a narrow distribution of silver nanoparticles were determined for the first time by varying the concentration of the initial silver nitrate solution. This result was confirmed by a wide range of mutually complementary methods such as spectrophotometry, dynamic light scattering, velocity sedimentation, and atomic force microscopy. The characteristics of the initial sample of the tobacco mosaic virus and silver nanoparticles stabilized by it both in solution and on a substrate were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Capek, I., Noble Metal Nanoparticles: Preparation, Composite Nanostructures, Biodecoration and Collective Properties, New York: Springer, 2017.

    Book  Google Scholar 

  2. Koetz, J. and Kosmella, S., Polyelectrolytes and Nanoparticles, Heidelberg: Springer, 2007.

    Google Scholar 

  3. Abdullaeva, Z., Synthesis of Nanoparticles and Nanomaterials: Biological Approaches, Cham: Springer, 2017.

    Book  Google Scholar 

  4. Taghavizadeh Yazdi, M.E., Hamidi, A., Amiri, M.S., Kazemi Oskuee, R., Hosseini, H.A., Hashemzadeh, A., and Darroudi, M., Mater. Technol., 2019, vol. 34, no. 8, p. 490.

    Article  Google Scholar 

  5. Bilal, M., Rasheed, T., Iqbal, H.M.N., Hu, H., Wang, W., and Zhang, X., Int. J. Biol. Macromol., 2017, vol. 103, p. 554.

    Article  CAS  PubMed  Google Scholar 

  6. Haes, A.J., Hall, W.P., Chang, L., Klein, W.L., and van Duyne, R.P., Nano Lett., 2004, vol. 4, no. 6, p. 1029.

    Article  CAS  Google Scholar 

  7. Zhang, L., Wang, W., Chen, Z., Zhou, L., Xu, H., and Zhu, W., J. Mater. Chem., 2007, vol. 17, no. 24, p. 2526.

    Article  CAS  Google Scholar 

  8. Kosiorek, A., Kandulski, W., Chudzinski, P., Kempa, K., Giersig, M., Nano Lett., 2004, vol. 4, no. 7, p. 1359.

    Article  CAS  Google Scholar 

  9. Yan, F. and Goedel, W.A., Adv. Mater., 2004, vol. 16, no. 11, p. 911.

    Article  CAS  Google Scholar 

  10. Wu, M.H. and Whitesides, G.M., Appl. Phys. Lett., 2001, vol. 78, no. 16, p. 2273.

    Article  CAS  Google Scholar 

  11. Baruwati, B., Polshettiwar, V., and Varma, R.S., Green Chem., 2009, vol. 11, no. 7, p. 926.

    Article  CAS  Google Scholar 

  12. Henglein, A. and Giersig, M., J. Phys. Chem. B, 1999, vol. 103, no. 44, p. 9533.

    Article  CAS  Google Scholar 

  13. Sun, Y. and Xia, Y., Science, 2002, vol. 298, no. 5601, p. 2176.

    Article  CAS  PubMed  Google Scholar 

  14. Shin, H.S., Yang, H.J., Kim, S.B., and Lee, M.S., J. Colloid Interface Sci., 2004, vol. 274, no. 1, p. 89.

    Article  CAS  PubMed  Google Scholar 

  15. Salkar, R.A., Jeevanandam, P., Aruna, S.T., Koltypin, Y., and Gedanken, A., J. Mater. Chem., 1999, vol. 9, no. 6, p. 1333.

    Article  CAS  Google Scholar 

  16. Upert, G., Bouillère, F., and Wennemers, H., Angew. Chem., Int. Ed., 2012, vol. 51, no. 17, p. 4231.

    Article  CAS  Google Scholar 

  17. Lee, S.Y., Royston, E., Culver, J.N., and Harris, M.T., Nanotechnology, 2005, vol. 16, no. 7, p. S435.

    Article  PubMed  Google Scholar 

  18. Yang, C., Choi, C.H., Lee, C.S., and Yi, H., ACS Nano, 2013, vol. 7, no. 6, p. 5032.

    Article  CAS  PubMed  Google Scholar 

  19. Kundu, S., Phys. Chem. Chem. Phys., 2013, vol. 15, no. 33, p. 14107.

    Article  CAS  PubMed  Google Scholar 

  20. Galloway, J.M. and Staniland, S.S., J. Mater. Chem., 2012, vol. 22, no. 25, p. 12423.

    Article  CAS  Google Scholar 

  21. Wennemers, H., J. Pept. Sci., 2012, vol. 18, no. 7, p. 437.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, H., Li, Q., Lu, Y., Sun, D., Lin, X., Deng, X., He, N., and Zheng, S., J. Chem. Technol. Biotechnol., 2005, vol. 80, no. 3, p. 285.

    Article  CAS  Google Scholar 

  23. Lee, Y., Kim, J., Yun, D. S., Nam, Y.S., Shao-Horn, Y., and Belcher, A.M., Energy Environ. Sci., 2012, vol. 5, no. 8, p. 8328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Murugadoss, A. and Chattopadhyay, A., Nanotechnology, 2007, vol. 19, no. 1, 015603.

  25. Currie, H.A., Deschaume, O., Naik, R.R., Perry, C.C., and Kaplan, D.L., Adv. Funct. Mater., 2011, vol. 21, no. 15, p. 2889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baghizadeh, A., Ranjbar, S., Gupta, V.K., Asif, M., Pourseyedi, S., Karimi, M.J., and Mohaм Madinejad, R., J. Mol. Liq., 2015, vol. 207, p. 159.

    Article  CAS  Google Scholar 

  27. Lee, Y.J., Lee, Y., Oh, D., Chen, T., Ceder, G., and Belcher, A.M., Nano Lett., 2010, vol. 10, no. 7, p. 2433.

    Article  CAS  PubMed  Google Scholar 

  28. Ghosh, D., Lee, Y., Thomas, S., Kohli, A.G., Yun, D.S., Belcher, A.M., and Kelly, K.A., Nat. Nanotechnol., 2012, vol. 7, no. 10, p. 677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ghosh, D., Kohli, A.G., Moser, F., Endy, D., and Belcher, A.M., ACS Synth. Biol., 2012, vol. 1, no. 12, p. 576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Namba, K. and Stubbs, G., Science, 1986, vol. 231, no. 4744, p. 1401.

    Article  CAS  PubMed  Google Scholar 

  31. Bruckman, M.A., Vanmeter, A., and Steinmetz, N.F., ACS Biomater. Sci. Eng., 2015, vol. 1, no. 1, p. 13.

    Article  CAS  PubMed  Google Scholar 

  32. Rodríguez-Galván, A., Martínez-Lorán, E., Naveja, J.J., Ornelas-Soto, N., Basiuk, V.A., and Contreras-Torres, F.F., J. Nanosci. Nanotechnol., 2017, vol. 17, no. 7, p. 4740.

    Article  Google Scholar 

  33. Trifonova, E.A., Nikitin, N.A., Kirpichnikov, M.P., Karpova, O.V., and Atabekov, J.G., Moscow Univ. Biol. Sci. Bull. (Engl. Tarnsl.), 2015, vol. 70, no. 4, p. 194.

  34. Neurath, H., Saum, A.M., J. Biol. Chem., 1938, vol. 126, p. 435.

    Article  CAS  Google Scholar 

  35. Schuck, P., Biophys. J., 2000, vol. 78, no. 3, p. 1606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Analytical Ultracentrifugation. http://www.analyticalultracentrifugation.com/.

  37. de La Torre, J.G., Martinez, M.C.L., and Tirado, M.M., Biopolymers, 1984, vol. 23, no. 4, p. 611.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The AUC and AFM measurements were carried out using the instruments of the research park of St. Petersburg State University Centre for Diagnosis of Functional Materials in Medicine, Pharmacology and Nanoelectronics.

Funding

A.S. Gubarev, A.A. Lezov, M. E. Mikhailova, A.S. Senchukova, N.G. Mikusheva and N.V. Tsvetkov are grateful to the Russian Science Foundation for financial support (project no. 16-13-10148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Tsvetkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubarev, A.S., Lezov, A.A., Mikhailova, M.E. et al. Green Synthesis of Silver Nanoparticles with the Tobacco Mosaic Virus. rev. and adv. in chem. 11, 189–196 (2021). https://doi.org/10.1134/S207997802103002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207997802103002X

Keywords:

Navigation