Skip to main content
Log in

A Spatial Database of Ecosystems of the Lake Baikal Basin

  • SYSTEMATIC STUDY OF ARID TERRITORIES
  • Published:
Arid Ecosystems Aims and scope Submit manuscript

Abstract

A database, including a map layer of ecosystems of the Lake Baikal basin, has been compiled at a scale of 1 : 500 000. The area is divided into 71 types of mesocombinations of plant communities and their anthropogenically transformed variants, which reflect natural units, corresponding to the level of urochishche/suburochishche of landscapes. A digital map layer of morphogenetic relief types (31 were specified) was elaborated to reflect the spatial variability of the distinguished geobotanical units. The map layer of the soil cover of the basin was based on interpolation of various published thematic data and supplemented by archived and long-term data of terrain survey of the soil cover performed by the Joint Russian–Mongolian Complex Biological Expedition of the Russian Academy of Sciences and of the Mongolian Academy of Sciences. The prepared database includes spatial data on ecosystems and their anthropogenic disturbance for nine model polygons (at a scale larger than 1 : 200 000) and eight test plots (at a scale of 1 : 5000–1 : 10 000), as well as 1757 geobotanical descriptions made by the authors earlier. The 5.1 GB spatial database is a cartographic web service located at https://mon-exp.nextgis.com/resource/. It is intended for open use on any personal computer, workstation, notebook, tablet, and smartphone with Windows and Android OS, including mobile ones with Internet access.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Notes

  1. Since the database is dynamically updated both elementally (additions to existing map layers) and structurally (adding new map layers), here is a description of the contents of the database as of the end of January 2022.

REFERENCES

  1. Armand, A.D., Informatsionnye modeli prirodnykh kompleksov (Information Models of Natural Complexes), Moscow: Nauka, 1975.

  2. Antropogennaya transformatsiya pripodnykh system i sotsial’no-ekonomicheskie posledstviya v basseine reki Selengi (Anthropogenic Transformation of Natural Systems and Socio-Economic Consequences in the Basin of the Selenga River.), Radnaev, B.L., Ed., Ulan-Ude: Buryat State Univ., 2012.

    Google Scholar 

  3. Bazha, S.N., Danzhalova, E.V., Drobyshev, Yu.I., and Khadbaatar, S., Transformatsiya nazemnykh ekosistem yuzhnoi chasti basseina Baikala (Transformation of Terrestrial Ecosystems in the Southern Part of the Baikal Basin), Moscow: KMK, 2018.

  4. Bazha, S.N., Andreev, A.V., Bogdanov, E.A., Danzhalova, E.V., Drobyshev, Yu.I., Petukhov, I.A., Rupyshev, Yu.A., Ubugunova, V.I., Ivanov, L.A., Khadbaatar, S., and Tsyrempilov, E.G., Analysis of the cause and effect of ecosystem degradation in the Lake Baikal basin based on long-term monitoring in the network of model polygons, Arid Ecosyst., 2021, vol. 11, no. 2, pp. 121–134.

    Article  Google Scholar 

  5. Belov, A.V., Sokolova, L.P., and Tuvshintogtokh, I., Vegetation. Map. Scale 1 : 5 000 000, in Ekologicheskii atlas basseina oz. Baikal (The Ecological Atlas of the Lake Baikal Basin), Irkutsk: Inst. Geogr. im. V.B. Sochavy Sib. Otd. Ross. Akad. Nauk, 2015, pp. 34–36.

  6. Cherdonova, V.A., Current state and processes of transformation of the vegetation cover in the Russian part of the Selenga River Basin, Cand. Sci. (Biol.) Dissertation, Moscow, 2003.

  7. D”yakonov, K.N. and Puzachenko, Yu.G., 2004. Theoretical aspects and directions of research in modern landscape science, in Geografiya Obshchestvo i okruzhayushchaya sreda, Funktsionirovannie i sovremennoe sostoyanie landshaftov (Geography, Society and Environment. Functioning and Current State of Landscapes), 2004, vol. 2, pp. 21–30.

  8. Ekosistemy basseina Selengi (Aquatic Ecosystems of the Selenga basin), Dgebuadze, Yu.Yu., Ed., Moscow: Rosselkhozakademiya, 2009, vol. 55.

    Google Scholar 

  9. Ecosystems of Mongolia. Atlas., M.‑Ulaanbaatar: KMK Scientific Press, 2019.

  10. Ekologicheskii atlas basseina ozera Baikal (The Ecological Atlas of the Lake Baikal Basin), Irkutsk: Inst. Geogr. im. V.B. Sochavy Sib. Otd. Ross. Akad. Nauk, 2015, http://bic.iwlearn.org/ru/atlas/atlas. Cited March 24, 2020.

  11. Ecosystem map of the Selenga basin. Scale 1 : 500 000, in Ekosistemy basseina Selengi (Aquatic Ecosystems of the Selenga basin), Vostokova, E.A. and Gunin, P.D., Eds., Moscow: Nauka, 2005.

  12. GIS Ecosystems of the Lake Baikal Basin. https://mon-exp.nextgis.com/resource/. Cited January 31, 2022.

  13. Isachenko, A.G., Methodology of landscape science and landscape-geographic scientific method, Izv. Russ. Geogr. O-va, 2016, vol. 148, no. 1, pp. 15–30.

    Google Scholar 

  14. Kesel’, E.A., Moroz, A.V., Gubarevich, E.S., and Myslyva, T.N., Complex morphometric analysis of the territory using GIS, Materialy XIV Mezhdunarodnoi nauchno-prakticheskaya konferentsii “Agrarnaya nauka–Sel’skomu khozyaistvu” (Proc. XIV Int. Sci.-Pract. Conf. “Agricultural Science in Farming”), Barnaul: Altai. Gos. Agrar. Univ., 2019, pp. 345–347.

  15. Khadbaatar, S., Landscape and ecological features of degradation of boharic lands in the central part of the Selenga Basin, Cand. Sci. (Geogr.) Dissertation, Moscow, 2010.

  16. Kolbovskii, E.Yu., 2016. Geoinformation modeling and mapping of landscape sites, Izv. Vyssh. Uchebn. Zaved., Geod. Aerofotos''emka, no. 5, pp. 20–24.

  17. Kopecký, M. and Čížková, Š., Using topographic wetness index in vegetation ecology: does the algorithm matter?, Appl. Veg. Sci., 2010, vol. 13, no. 4, pp. 450–459.

    Article  Google Scholar 

  18. Kuminova, A.V., Sedel’nikov, V.P., and Maskaev, Yu.M., Rastitel’nyi pokrov i estestvennye kormovye ugod’ya Tuvinskoi ASSR (Vegetation Cover and Natural Fodder Lands of the Tuva ASSR), Koropachinskii, I.Yu, Ed., Novosibirsk: Nauka, 1985.

    Google Scholar 

  19. Lebedeva, I.I., Ovechkin, S.V., Korolyuk, T.V., and Gerasimova, M.I., 2012. Soil-genetic zoning: Principles, goals, structure, and applications, Eurasian Soil Sci., 2012, vol. 45, pp. 639–650.

    Article  Google Scholar 

  20. Ma J., Lin G., Chen J., and Yang L., An improved topographic wetness index considering topographic position, 18th Int. Conf. on Geoinformatics, 2010, pp. 1–4.

  21. Mokarram, M., Darvishi, A., and Negahban, S., The relation between morphometric characteristics of watersheds and erodibility at different altitude levels using topographic position index (TPI) case study: Nazloochaei Watershed, Sci.-Res. Q. Geogr. Data (SEPEHR), 2017, vol. 26, no. 101, pp. 131–142.

    Google Scholar 

  22. Moore, I.D., Grayson, R.B., and Ladson, A.R., Digital terrain modelling: A review of hydrological, geomorphological and biological applications, Hydrol. Processes, 1991, vol. 5, no. 1, pp. 3–30.

    Article  Google Scholar 

  23. Natsional’nyi atlas pochv Rossiiskoi Federatsii (National Soil Atlas of the Russian Federation), Moscow: Astrel’, 2011. https://soil-db.ru/soilatlas. Cited March 20, 2018.

  24. Polevoi opredelitel’ pochv Rossii (Field Determinant of the Soil of Russia), Moscow: Soil Inst. V.V. Dokuchaev, 2008.

  25. Różycka, M., Migoń, P., and Michniewicz, A., Topographic wetness index and terrain ruggedness index in geomorphic characterization of landslide terrains, on examples from the sudetes, SW Poland, Z. Geomorphol., 2017, vol. 61, pp. 61–80.

    Article  Google Scholar 

  26. Rukhovich, D.I., Koroleva, P.V., Kalinina, N.V., Vil’chevskaya, E.V., Simakova, M.S., Dolinina, E.A., and Rukhovich, S.V., State soil map of the Russian Federation: An ArcInfo version, Eurasian Soil Sci., 2013, vol. 46, pp. 225–240.

    Article  Google Scholar 

  27. Shishov, L.L., Tonkonogov, V.D., Lebedeva, I.I., and Gerasimova, M.I., Klassifikatsiya i diagnostika pochv Rossii (Classification and Diagnostics of Russian Soils), Smolensk: Oikumena, 2004.

  28. Soils. Map. Scale 1 : 5 000 000, in Ekologicheskii atlas basseina ozera Baikal (The Ecological Atlas of the Lake Baikal Basin), Irkutsk: Inst. Geogr. im. V.B. Sochavy Sib. Otd. Ross. Akad. Nauk, 2015, p. 39. http://bic. iwlearn.org/ru/atlas/atlas. Cited March 24, 2020.

  29. Sörensen, R., Zinko, U., and Seibert, J., On the calculation of the topographic wetness index: evaluation of different methods based on field observations, Hydrol. Earth System Sci., 2006, vol. 10, no. 1, pp. 101–112.

    Article  Google Scholar 

  30. Starozhilov, V.T., The method of the vector layers of landscape mapping and zoning, Probl. Reg. Ekol., 2018, no. 2, pp. 134–138.

  31. Tağıl, Ş. and Jenness, J., GIS-based automated landform classification and topographic, landcover and geologic attributes of landforms around the Yazoren Polje, Turkey, J. Appl. Sci., 2008, vol. 8, pp. 910–921.

    Article  Google Scholar 

  32. Tsybzhitov, Ts.Kh., Pochvy lesostepi Selenginskogo srednegor’ya (Soils of the Forest-Steppe of the Selenga Middle Mountains), Ulan-Ude, 1971.

  33. Tulokhonov, A.K., Baikal’skii region: problemy ustoichivogo razvitiya (Baikal Region: Problems of Sustainable zdevelopment), Novosibirsk: Nauka, 1996.

  34. Ubugunov, L.L., Gyninova, A.B., Belozertseva, I.A., Dorzhgotov, D., Ubugunova, V.I., Sorokovoi, A.A., Ubugunov, V.L., Badmaev, N.B., and Gonchikov, B.N., Geographical patterns of soil distribution within the watersheds of Baikal (as applied to the map “the soils of Baikal Basin”), Prir. Vnutr. Azii, 2018, vol. 7, no. 2, pp. 7–26.

    Google Scholar 

  35. Ubugunov, L.L., Ubugunova, V.I., Badmaev, N.B., Gyninova, A.B., Ubugunov, V.L., and Balsanova, L.D., Soils of Buryatia: variety, systematization and classification, Vestn. Buryat. Gos. S-kh. Akad. im. V.R. Filippova, 2012, no. 2, pp. 45–52.

  36. Ufimtseva, K.A., On Taiga Soils of Transbaikalia, Pochvovedenie, 1963, no. 3, pp. 51–62.

  37. USGS. United States Geological Survey. 2022. https:// earthexplorer.usgs.gov. Cited November 10, 2021.

  38. Weiss, A.D., 2000. Topographic Position and Landforms Analysis. Poster. http://www.jennessent.com/downloads/ tpi-poster-tnc_18x22.pdf. Cited November 12, 2021.

Download references

Funding

This work was performed within the framework of the Scientific Program of the Joint Russian–Mongolian Complex Biological Expedition of the Russian Academy of Sciences and the Mongolian Academy of Sciences and was supported by the Russian Foundation for basic Research, project no. 17-29-05019 Dangerous Degradation Processes and Their Role in the Formation of Anthropogenically Transformed Landscapes in the Lake Baikal Basin.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. N. Bazha or Yu. A. Rupyshev.

Additional information

Translated by I. Bel’chenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazha, S.N., Andreev, A.V., Bogdanov, E.A. et al. A Spatial Database of Ecosystems of the Lake Baikal Basin. Arid Ecosyst 12, 243–250 (2022). https://doi.org/10.1134/S2079096122030039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079096122030039

Keywords:

Navigation