Skip to main content
Log in

Genetic Diversity of the Eastern Subspecies of Red Deer (Cervus elaphus) in Russia Revealed by mtDNA and Microsatellite Polymorphism

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

We analyzed the polymorphism of the complete mtDNA cytochrome b gene (1140 bp) and 12 microsatellite nDNA loci of the eastern red deer Cervus elaphus subspecies—Siberian C. e. sibiricus and Far East C. e. xanthopygus wapiti. On the territory of Russia, 112 samples were collected from different parts of the range, including Yakutia, where individuals with intermediate morphometric traits were found. We described 41 haplotypes, with no common haplotypes found for Siberian and Far East wapiti. Phylogenetic cytochrome b analysis revealed traces of ancestral polymorphism or introgression from Far East wapiti into Siberian wapiti. The red deer of Yakutia formed two haplogroups: the first group was genetically closer to Siberian wapiti, and the second was closer to American wapiti. The latter may indicate the preservation of ancient lines in Yakutia, which participated in the North America colonization during the Pleistocene glaciation. Microsatellite analysis revealed a little differentiation between the subspecies (Fst = 0.037), reflecting the presence of a constant gene flow between their populations. The genotypes of red deer from Yakutia demonstrate heterogeneity, indicating their mixed origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Abramson, N.I., Phylogeography: Results, issues and perspectives, Vestn. Vavilov. O-va Genet. Sel., 2007, vol. 11, no. 2, pp. 307–331.

    Google Scholar 

  2. Allendorf, F.W. and Luikart, G., Conservation and the Genetics of Populations, Oxford: Blackwell, 2007.

    Google Scholar 

  3. Avise, J.C., Phylogeography: The History and Formation of Species, Cambridge: Harvard Univ. Press, 2000.

    Book  Google Scholar 

  4. Danilkin, A.A., Mlekopitayushchie Rossii i sopredel’nykh regionov. Olen’i (Mammals of Russia and Adjacent Regions. Deer), Moscow: GEOS, 1999.

  5. Dellicour, S., Frantz, A.C., Colyn, M., Bertouille, S., Chaumont, F., and Flamand, M.C., Population structure and genetic diversity of red deer (Cervus elaphus) in forest fragments in north-western France, Conserv. Genet., 2011, vol. 12, pp. 1287–1297. https://doi.org/10.1007/s10592-011-0230-0

    Article  Google Scholar 

  6. Doan, K., Mackiewicz, P., Sandoval-Castellanos, E., Stefaniak, K., Ridush, B., et al., The history of Crimean red deer population and Cervus phylogeography in Eurasia, Zool. J. Linn. Soc., 2018, vol. 183, pp. 208–225. https://doi.org/10.1093/zoolinnean/zlx065

    Article  Google Scholar 

  7. Doan, K., Niedziałkowska, M., Stefaniak, K., Sykut, M., Jedrzejewska, B., et al., Phylogenetics and phylogeography of red deer mtDNA lineages during the last 50 000 years in Eurasia, Zool. J. Linn. Soc., 2021, vol. 194, no. 2, pp. 431–456. https://doi.org/10.1093/zoolinnean/zlab025

    Article  Google Scholar 

  8. Earl, D.A. and VonHoldt, B.M., STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method, Conserv. Genet. Resour., 2012, vol. 4, pp. 359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  9. Egorov, O.V., Red deer (Cervus elaphus L.), in Dikie kopytnye Yakutii (Wild Ungulates of Yakutia), Moscow: Nauka, 1965, pp. 71–87.

  10. Excoffier, L. and Lischer, H.E.L., Arlequin Suite ver 3.5, a new series of programs to perform population genetics analyses under Linux and Windows, Mol. Ecol. Resour., 2010, vol. 10, pp. 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  11. Feulner, P.G.D., Bielfeldt, W., Zachos, F.E., Bradvarovic, J., Eckert, I., and Hartl, G.B., Mitochondrial DNA and microsatellite analyses of the genetic status of the presumed subspecies Cervus elaphus montanus (Carpathian red deer), Heredity, 2004, vol. 93, pp. 299–306. https://doi.org/10.1038/sj.hdy.6800504

    Article  CAS  PubMed  Google Scholar 

  12. Frantz, A.C., Zachos, F.E., Bertouille, S., Eloy, M.-C., Colyn, M., and Flamand, M.-C., Using genetic tools to estimate the prevalence of non-native red deer (Cervus elaphus) in a Western European population, Ecol. Evol., 2017, vol. 7, no. 19, pp. 7650–7660. https://doi.org/10.1002/ece3.3282

    Article  PubMed  PubMed Central  Google Scholar 

  13. Golosova, O.S., Kholodova, M.V., Volodin, I.A., Volodina, E.V., Likhatsky, E.Y., et al., Vocal phenotype of male rutting roars and genetic markers delineate East European red deer (Cervus elaphus) from Central and West European populations, Sci. Nat., 2021, vol. 108, p. 30. https://doi.org/10.1007/s00114-021-01742-0

    Article  CAS  Google Scholar 

  14. Goudet, J., FSTAT (Version 1.2): A computer program to calculate F-Statistics, J. Hered., 1995, vol. 86, no. 6, pp. 485–486. https://doi.org/10.1093/oxfordjournals.jhered.a111627

    Article  Google Scholar 

  15. Hall, T.A., Bioedit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 1999, vol. 41, pp. 95–98. https://doi.org/10.14601/Phytopathol_Mediterr-14998u1.29

    Article  CAS  Google Scholar 

  16. Hasegawa, M., Kishino, H., and Yano, T., Dating the human-ape split by a molecular clock of mitochondrial DNA, J. Mol. Evol., 1985, vol. 22, pp. 160–174. https://doi.org/10.1007/BF02101694

    Article  CAS  PubMed  Google Scholar 

  17. Kalinowski, S.T., Taper, M.L., and Marshall, T.C., Revising how the computer program CERVUS accommodates genotyping error increas-es success in paternity assignment, Mol. Ecol., 2007, vol. 16, pp. 1099–1106. https://doi.org/10.1111/j.1365-294x.2007.03089.x

    Article  PubMed  Google Scholar 

  18. Krojerova-Prokešova, J., Barančeková, M., and Koubek, P., Admixture of eastern and western European red deer lineages as a result of postglacial recolonization of the Czech Republic (Central Europe), J. Hered., 2015. vol. 106, pp. 375–385. https://doi.org/10.1093/jhered/esv018

    Article  CAS  PubMed  Google Scholar 

  19. Kuehn, R., Schroeder, W., Pirchner, F., and Rottmann, O., Genetic diversity, gene flow and drift in Bavarian red deer populations (Cervus elaphus), Conserv. Genet., 2003, vol. 4, pp. 157–166. https://doi.org/10.1023/A:1023394707884

    Article  CAS  Google Scholar 

  20. Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K., MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms, Mol. Biol. Evol., 2018, vol. 35, pp. 1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kuznetsova, M.V., Danilkin, A.A., and Kholodova, M.V., Phylogeography of red deer (Cervus elaphus): Analysis of mtDNA cytochrome b polymorphism, Biol. Bull. Russ. Acad. Sci., 2012, vol. 39, no. 4, pp. 323–330.

    Article  Google Scholar 

  22. Lorenzini, R. and Garofalo, L., Insights into the evolutionary history of Cervus (Cervidae, tribe Cervini) based on Bayesian analysis of mitochondrial marker sequences, with first indications for a new species, J. Zool. Syst. Evol. Res., 2015, vol. 53, no. 4, pp. 340–349. https://doi.org/10.1111/jzs.12104

    Article  Google Scholar 

  23. Ludt, C.J., Schroeder, W., Rottmann, O., and Kuehn, R., Mitochondrial DNA phylogeography of red deer (Cervus elaphus), Mol. Phylogenet. Evol., 2004, vol. 31, pp. 1064–1083. https://doi.org/10.1016/j.ympev.2003.10.003

    Article  CAS  PubMed  Google Scholar 

  24. Lunitsyn, V.G. and Borisov, N.P., Pantovoe olenevodstvo Rossii (Antler Deer Breeding in Russia), Barnaul: Azbuka, 2012.

  25. Mahmut, H., Masuda, R., Onuma, M., Takahashi, M., Nagata, J., et al., Molecular phylogeography of the red deer (Cervus elaphus) populations in Xinjiang of China: Comparison with other Asian, European, and North American populations, Zool. Sci., 2002, vol. 19, pp. 485–495. https://doi.org/10.2108/zsj.19.485

    Article  CAS  Google Scholar 

  26. Niedziałkowska, M., Jȩdrzejewska, B., Wójcik, J.M., and Goodman, S.J., Genetic structure of red deer population in Northeastern Poland in relation to the history of human interventions, J. Wildl. Manage., 2012, vol. 76, pp. 1264–1276. https://doi.org/10.1002/jwmg.367

    Article  Google Scholar 

  27. Ohtaishi, N. and Gao, Y., A review of the distribution of all species of deer (Tragulidae, Moschidae and Cervidae) in China, Mamm. Rev., 1990, vol. 20, pp. 125–144. https://doi.org/10.1111/j.1365-2907.1990.tb00108.x

    Article  Google Scholar 

  28. Peakall, R. and Smouse, P.E., GenAlEx 6: Genetic analysis in Excel. Population genetic software for teaching and research, Mol. Ecol., 2006, vol. 6, no. 1, pp. 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x

  29. Peakall, R. and Smouse, P.E., GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update, Bioinformatics, 2012, vol. 28, pp. 2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pitra, C., Fickel, J., Meijaard, E., and Groves, C.P., Evolution and phylogeny of old world deer, Mol. Phylogenet. Evol., 2004, vol. 33, pp. 880–895. https://doi.org/10.1016/j.ympev.2004.07.013

    Article  CAS  PubMed  Google Scholar 

  31. Polziehn, R., Hamr, J., Mallory, F., and Strobeck, C., Microsatellite analysis of North American wapiti (Cervus elaphus) populations, Mol. Ecol., 2000, vol. 9, pp. 1561–1576. https://doi.org/10.1046/j.1365-294x.2000.01033.x

    Article  CAS  PubMed  Google Scholar 

  32. Polziehn, R.O. and Strobeck, C., Phylogeny of wapiti, red deer, sika deer, and other North American cervids as determined from mitochondrial DNA, Mol. Phylogenet. Evol., 1998a, vol. 10, no. 2, pp. 249–258. https://doi.org/10.1006/mpev.1998.0527

    Article  CAS  PubMed  Google Scholar 

  33. Polziehn, R.O., Hamr, J., Mallory, F.F., and Strobeck, C., Phylogenetic status of North American wapiti (Cervus elaphus) subspecies, Can. J. Zool., 1998b, vol. 76, pp. 998–1010. https://doi.org/10.1139/z98-026

    Article  CAS  Google Scholar 

  34. Pritchard, J.K., Stephens, M., and Donnelly, P., Inference of population structure using multilocus genotype data, Genetics, 2000, vol. 155, pp. 945–959. https://doi.org/10.1093/genetics/155.2.945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Randi, E., Mucci, N., Claro-Hergueta, F., Bonnet, A., and Douzery, E.P., A mitochondrial DNA control region phylogeny of the cervinae: Speciation in Cervus and implication for conservation, Anim. Conserv., 2001, vol. 4, pp. 1–11.

    Article  Google Scholar 

  36. Selkoe, K. and Toonen, R., Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers, Ecol. Lett., 2006, vol. 9, pp. 615–629. https://doi.org/10.1111/j.1461-0248.2006.00889.x

    Article  PubMed  Google Scholar 

  37. Skog, A., Zachos, F.E., Rueness, E.K., Feulner, P.G.D., Mysterud, A., et al., Phylogeography of red deer (Cervus elaphus) in Europe, J. Biogeogr., 2009, vol. 36, pp. 66–77. https://doi.org/10.1111/j.1365-2699.2008.01986.x

    Article  Google Scholar 

  38. Stepanova, V.V. and Argunov, A.V., Morphometry of antlers of red deer (Cervus elaphus L., 1758) of Yakutia, Vestn. Udmurt. Gos. Univ., 2016a, vol. 26, no. 1, pp. 126–132.

    Google Scholar 

  39. Stepanova, V.V. and Argunov, A.V., Spatiotemporal dynamics of geographical ranges of red deer (Cervus elaphus, Cervidae) and Siberian roe deer (Capreolus pygargus, Cervidae) in Yakutia, Russ. J. Ecol., 2016b, vol. 47, no. 1, pp. 62–67.

    Article  Google Scholar 

  40. Stepanova, V.V. and Okhlopkov, I.M., Ekologiya blagorodnogo olenya Yakutii (Ecology of the Red Deer of Yakutia), Novosibirsk: Nauka, 2009.

  41. Volodin, I.A., Volodina, E.V., and Golosova, O.S., Automated monitoring of vocal rutting activity in red deer (Cervus elaphus), Russ. J. Theriol., 2016, vol. 15, pp. 91–99.

    Article  Google Scholar 

  42. Wahlund, S., Zusammensetzung von Populationen und Korrelationserscheinungen vom Standpunkt der Vererbungslehre aus Betrachtet, Hereditas, 1928, vol. 11, pp. 65–106. https://doi.org/10.1111/j.1601-5223.1928.tb02483.x

    Article  Google Scholar 

  43. Zachos, F.E., Frantz, A.C., Kuehn, R., Bertouille, S., Colyn, M., et al., Genetic structure and effective population sizes in European red deer (Cervus elaphus) at a continental scale: Insights from microsatellite DNA, J. Hered., 2016, vol. 107, pp. 318–326. https://doi.org/10.1093/jhered/esw01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou, C.-L., Turdy, R., and Halik, M., Genetic differentiation between red deer from different sample sites on the Tianshan Mountains (Cervus elaphus), China, Mitochondrial DNA, 2015, vol. 26, no. 1, pp. 101–111. https://doi.org/10.3109/19401736.2014.984165

    Article  CAS  PubMed  Google Scholar 

  45. Zvychaynaya, E.Y., Volokh, A.M., Kholodova, M.V., and Danilkin, A.A., Mitochondrial DNA polymorphism of the European roe deer, Capreolus capreolus (Artiodactyla, Cervidae), from the South-West of Ukraine, Vestn. Zool., 2013, vol. 47, no. 5, pp. 415–420.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are gre greteful to the owners of red deer farms for providing material for analysis, as well as S.L. Kalnov, N.A. Vlasova, A.V. Kuvaev, and I.A. Minakov, who participated in the collection of samples. The study was carried out on the basis of the Cabinet of Methods for Molecular Diagnostics of the Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, which is part of the Center for Collective Use Instrumental Methods in Ecology.

Funding

The study was supported by the Russian Foundation for Basic Research within the framework of scientific project no. 20-34-90123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. S. Golosova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Samples were taken from animals from farms during planned activities, as well as from wild animals that were legally hunted or died from natural causes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golosova, O.S., Kholodova, M.V., Volodin, I.A. et al. Genetic Diversity of the Eastern Subspecies of Red Deer (Cervus elaphus) in Russia Revealed by mtDNA and Microsatellite Polymorphism. Biol Bull Rev 13, 482–494 (2023). https://doi.org/10.1134/S2079086423050110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086423050110

Navigation