Skip to main content
Log in

Intraspecific Genetic Structure of the Gray Wolf, Canis lupus, Linnaeus, 1758—Current State of Knowledge

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

This review covers population genetics studies of the gray wolf (Canis lupus Linnaeus, 1758) employing molecular approaches. Intraspecific systematics, the current state of intrapopulation genetic diversity and differentiation in various parts of the range are reviewed with special attention to the Palearctic populations, as well as to the main underlying factors including anthropogenic pressure. The review also concerns the issues of wolf–dog hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aggarwal, R.K., Kivisild, T., Ramadevi, J., and Singh, L., Mitochondrial DNA coding region sequences support the phylogenetic distinction of two Indian wolf species, J. Zool. Syst. Evol. Res., 2007, vol. 45, no. 2, pp. 163–172.

    Article  Google Scholar 

  2. Åkesson, M., Liberg, O., Sand, H., et al., Genetic rescue in a severely inbred wolf population, Mol. Ecol., 2016, vol. 25, no. 19, pp. 4745–4756.

    Article  Google Scholar 

  3. Åkesson, M., Flagstad, Ø., Aspi, J., et al., Genetic signature of immigrants and their effect on genetic diversity in the recently established Scandinavian wolf population, Conserv. Genet., 2022, vol. 23, pp. 359–373.

    Article  Google Scholar 

  4. Andersone, Ž., Lucchini, V., and Ozoliņš, J., Hybridisation between wolves and dogs in Latvia as documented using mitochondrial and microsatellite DNA markers, Mamm. Biol., 2002, vol. 67, no. 2, pp. 79–90.

    Article  Google Scholar 

  5. Asadi-Aghbolaghi, M., Rezaei, H., Scandura, M., and Kaboli, M., Low gene flow between Iranian grey wolves (Canis lupus) and dogs documented using uniparental genetic markers, Zool. Middle East, 2014, vol. 60. https://doi.org/10.1080/09397140.2014.914708

  6. Aspi, J., Roininen, E., Ruokonen, M., et al., Genetic diversity, population structure, effective population size and demographic history of the Finnish wolf population, Mol. Ecol., 2006, vol. 15, no. 6, pp. 1561–1576.

    Article  CAS  Google Scholar 

  7. Aspi, J., Roininen, E., Kiiskilä, J., et al., Genetic structure of the northwestern Russian wolf populations and gene flow between Russia and Finland, Conserv. Genet., 2009, vol. 10, no. 4, pp. 815–826.

    Article  CAS  Google Scholar 

  8. Ausband, D.E., Genetic diversity and mate selection in a reintroduced population of gray wolves, Sci. Rep., 2022, vol. 12, no. 1, p. 535.

    Article  CAS  Google Scholar 

  9. Beeland, T., Tracing the origins of red wolves, in The Secret World of Red Wolves: The Fight to Save North America’s Other Wolf, Chapel Hill: Univ. of North Carolina Press, 2013, pp. 105–123.

    Google Scholar 

  10. Boitani, L., Ecological and cultural diversities in the evolution of wolf-human relationships, in Ecology and Conservation of Wolves in a Changing World, Edmonton, Alta, Canada: Canadian Circumpolar Institute, Univ. of Alberta, 1995, pp. 3–11.

    Google Scholar 

  11. Bondarev, A.Ya., Vorob’evskaya, E.A., and Politov, D.V., On genetic differentiation of wolves in Siberia, Vestn. Gos. Agrar. Univ., 2013, vol. 9, pp. 49–56.

    Google Scholar 

  12. Bray, T.C., Mohammed, O.B., Butynski, T.M., et al., Genetic variation and subspecific status of the grey wolf (Canis lupus) in Saudi Arabia, Mamm. Biol., 2014, vol. 79, no. 6, pp. 409–413.

    Article  Google Scholar 

  13. Caniglia, R., Galaverni, M., Velli, E., et al., A standardized approach to empirically define reliable assignment thresholds and appropriate management categories in deeply introgressed populations, Sci. Rep., 2020, vol. 10, p. 2862.

    Article  CAS  Google Scholar 

  14. Carroll, C., Rohlf, D.J., von Holdt, B.M., et al., Wolf delisting challenges demonstrate need for an improved framework for conserving intraspecific variation under the Endangered Species Act, BioScience, 2020, vol. 71, no. 1, pp. 73–84.

    Google Scholar 

  15. Chapron, G., Kaczensky, P., Linnell, J.D., et al., Recovery of large carnivores in Europe’s modern human-dominated landscapes, Science, 2014, vol. 346, no. 6216, pp. 1517–1519.

    Article  CAS  Google Scholar 

  16. Ciucci, P., Reggioni, W., Maiorano, L., and Boitani, L., Long-distance dispersal of a rescued wolf from the Northern Apennines to the Western Alps, J. Wildl. Manage., 2009, vol. 73, no. 8, pp. 1300–1306.

    Article  Google Scholar 

  17. Corbet, G.B., The mammals of the Palearctic region. A taxonomic review, J. Mammal., 1979, vol. 60, no. 3, pp. 656–657.

    Google Scholar 

  18. Czarnomska, S.D., Jędrzejewska, B., Borowik, T., et al., Concordant mitochondrial and microsatellite DNA structuring between Polish lowland and Carpathian Mountain wolves, Conserv. Genet., 2013, vol. 14, no. 3, pp. 573–588.

    Article  Google Scholar 

  19. Deinet, S., Ieronymidou, C., McRae, L., et al., Wildlife comeback in Europe: the recovery of selected mammal and bird species, in Final Report to Rewilding Europe by ZSL, Birdlife International and the European Bird Census Council, London: ZSL, 2013.

  20. Ellegren, H., The genetical history of an isolated population of the endangered grey wolf Canis lupus: a study of nuclear and mitochondrial polymorphisms, Philos. Trans. R. Soc., B., 1996, vol. 351, no. 1348, pp. 1661–1669.

  21. Ellegren, H., Inbreeding and relatedness in Scandinavian grey wolves Canis lupus, Hereditas, 1999, vol. 130, no. 3, pp. 239–244.

    Article  CAS  Google Scholar 

  22. Ericson, H.S., Fedorca, A., Toderas, I., et al., Genome-wide profiles indicate wolf population connectivity within the eastern Carpathian Mountains, Genetics, 2020, vol. 148, no. 1, pp. 33–39.

    CAS  Google Scholar 

  23. Ersmark, E., Klütsch, C.F.C., Chan, Y.L., et al., From the past to the present: Wolf phylogeography and demographic history based on the mitochondrial control region, Front. Ecol. Evol., 2016, vol. 4, no. DEC, pp. 1–12.

    Article  Google Scholar 

  24. Fabbri, E., Miquel, C., Lucchini, V., et al., From the Apennines to the Alps: colonization genetics of the naturally expanding Italian wolf (Canis lupus) population, Mol. Ecol., 2007, vol. 16, no. 8, pp. 1661–1671.

    Article  CAS  Google Scholar 

  25. Fabbri, E., Caniglia, R., Kusak, J., et al., Genetic structure of expanding wolf (Canis lupus) populations in Italy and Croatia, and the early steps of the recolonization of the Eastern Alps, Mamm. Biol., 2014, vol. 79, no. 2, pp. 138–148.

    Article  Google Scholar 

  26. Fan, Z., Silva, P., Gronau, I., et al., Worldwide patterns of genomic variation and admixture in gray wolves, Genet. Res., 2016, vol. 26, no. 2, pp. 163–173.

    CAS  Google Scholar 

  27. Flagstad, Ø., Walker, C.W., Vilà, C., et al., Two centuries of the Scandinavian wolf population: patterns of genetic variability and migration during an era of dramatic decline, Mol. Ecol., 2003, vol. 12, no. 4, pp. 869–880.

    Article  CAS  Google Scholar 

  28. Geptner, V.G., Naumov, N.P., and Yurgenson, P.B., Mlekopitayushchie Sovetskogo Soyuza (Mammals of the Soviet Union), Moscow: Vysshaya Shkola, 1967.

  29. Godinho, R., Llaneza, L., Blanco, J.C., et al., Genetic evidence for multiple events of hybridization between wolves and domestic dogs in the Iberian Peninsula, Mol. Ecol., 2011, vol. 20, no. 24, pp. 5154–5166.

    Article  Google Scholar 

  30. Gomerčić, T., Sindičić, M., Galov, A., et al., High genetic variability of the grey wolf (Canis lupus L.) population from Croatia as revealed by mitochondrial DNA control region sequences, Zool. Stud., 2010, vol. 49, no. 6, pp. 816–823.

    Google Scholar 

  31. Gula, R., Hausknecht, R., and Kuehn, R., Evidence of wolf dispersal in anthropogenic habitats of the Polish Carpathian Mountains, Biodivers Conserv., 2009, vol. 18, no. 8, pp. 2173–2184.

    Article  Google Scholar 

  32. Gula, R., Bojarska, K., Theuerkauf, J., et al., Re-evaluation of the wolf population management units in Central Europe, Wildlife Biology, 2020, vol. 2020, no. 2. https://doi.org/10.2981/wlb.00505

  33. Hindrikson, M., Remm, J., Pilot, M., et al., Wolf population genetics in Europe: a systematic review, meta-analysis and suggestions for conservation and management, Biol. Rev., 2017, vol. 92, no. 3, pp. 1601–1629.

    Article  Google Scholar 

  34. Ibiş, O., Aksöyek, E., Özcan, S., et al., Genetic analysis of the Turkish gray wolf (Canis lupus) based on partial mitochondrial DNA sequences, Vertebr. Zool., 2016, vol. 66, no. 3, pp. 427–435.

    Google Scholar 

  35. Jansson, E., Ruokonen, M., Kojola, I., and Aspi, J., Rise and fall of a wolf population: Genetic diversity and structure during recovery, rapid expansion and drastic decline, Mol. Ecol., 2012, vol. 21, no. 21, pp. 5178–5193.

    Article  CAS  Google Scholar 

  36. Jansson, E., Harmoinen, J., Ruokonen, M., and Aspi, J., Living on the edge: reconstructing the genetic history of the Finnish wolf population, BMC Evol. Biol., 2014, vol. 14, no. 1, pp. 1–21.

    Article  Google Scholar 

  37. Jȩdrzejewski, W., Branicki, W., Veit, C., et al., Genetic diversity and relatedness within packs in an intensely hunted population of wolves Canis lupus, Acta Theriol., 2005, vol. 50, no. 1, pp. 3–22.

    Article  Google Scholar 

  38. Khosravi, R., Rezaei, H.R., and Kaboli, M., Detecting hybridization between Iranian wild wolf (Canis lupus pallipes) and free-ranging domestic dog (Canis familiaris) by analysis of microsatellite markers, Zool. Sci., 2013, vol. 30, no. 1, pp. 27–34.

    Article  Google Scholar 

  39. Kojola, I., Ronkainen, S., Hakala, A., et al., Interactions between wolves Canis lupus and dogs C. familiaris in Finland, Wildlife Biology, 2004, vol. 10, no. 2, pp. 101–105.

    Article  Google Scholar 

  40. Korablev, M.P., Korablev, N.P., and Korablev, P.N., Genetic diversity and population structure of the grey wolf (Canis lupus Linnaeus, 1758) and evidence of wolf × dog hybridisation in the centre of European Russia, Mamm. Biol., 2020, vol. 101, no. 1, pp. 91–104.

    Article  Google Scholar 

  41. Lesniak, I., Heckmann, I., Heitlinger, E., et al., Population expansion and individual age affect endoparasite richness and diversity in a recolonising large carnivore population, Sci. Rep., 2017, vol. 7, p. 28128348.

    Article  Google Scholar 

  42. Liberg, O., Andrén, H., Pedersen, H.C., et al., Severe inbreeding depression in a wild wolf (Canis lupus) population, Biol. Lett., 2005, vol. 1, no. 1, pp. 17–20.

    Article  CAS  Google Scholar 

  43. Linnell, J., Salvatory, V., and Boitani, L., Guidelines for population level management plans for large carnivores. A large carnivore initiative for Europe report prepared for the European Commission (contract 070501/2005/424162/MAR/B2), 2008.

  44. Loog, L., Thalmann, O., Sinding, M.H.S., et al., Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia, Mol. Ecol., 2020, vol. 29, no. 9, pp. 1596–1610.

    Article  Google Scholar 

  45. Lorenzini, R., Fanelli, R., Grifoni, G., et al., Wolf-dog crossbreeding: “Smelling” a hybrid may not be easy, Mamm. Biol., 2014, vol. 79, no. 2, pp. 149–156.

    Article  Google Scholar 

  46. Lucchini, V., Galov, A., and Randi, E., Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in the Italian Apennines, Mol. Ecol., 2004, vol. 13, no. 3, pp. 523–536.

    Article  CAS  Google Scholar 

  47. Mallet, J., Hybridization as an invasion of the genome, Trends Ecol. Evol., 2005, vol. 20, no. 5, pp. 229–237.

    Article  Google Scholar 

  48. Mallinson, J., The Shadow of Extinction: Europe’s Threatened Wild Mammals, London: Macmillan, 1978.

    Google Scholar 

  49. Mammal Species of the World. A Taxonomic and Geographic Reference, Wilson, D. and Reeder, D.A., Eds., Johns Hopkins Univ. Press, 2005, 3rd ed.

  50. Marucco, F., Pilgrim, K.L., Avanzinelli, E., et al., Wolf dispersal patterns in the Italian Alps and implications for wildlife diseases spreading, Animals, 2022, vol. 12, no. 10, p. 1260.

    Article  Google Scholar 

  51. Mech, L.D., Canis lupus, Mamm. Species, 1974, vol. 8235, no. 37, p. 1.

    Article  Google Scholar 

  52. Mech, L.D. and Boitani, L., Wolves: Behavior, Ecology, and Conservation, Chicago: Univ. of Chicago Press, 2006.

    Google Scholar 

  53. Montana, L., Caniglia, R., Galaverni, M., et al., Combining phylogenetic and demographic inferences to assess the origin of the genetic diversity in an isolated wolf population, PLoS One, 2017, vol. 12, no. 5, pp. 1–19.

    Article  Google Scholar 

  54. Moura, A.E., Tsingarska, E., Dąbrowski, M.J., et al., Unregulated hunting and genetic recovery from a severe population decline: the cautionary case of Bulgarian wolves, Conserv. Genet., 2014, vol. 15, no. 2, pp. 405–417.

    Article  Google Scholar 

  55. Nowak, R.M., Another Look at Wolf Taxonomy, Carbin, L.N., Fritts, S.H., and Seip, D.R., Eds., Canada, Edmonton, Alberta: Canadian Circumpolar Institute, Univ. of Alberta, 1995, pp. 375–397.

    Google Scholar 

  56. Nowak, R.M. and Federoff, N.E., The systematic status of the Italian wolf Canis lupus, Acta Theriol., 2002, vol. 47, no. 3, pp. 333–338.

    Article  Google Scholar 

  57. Ordiz, A., Canestrari, D., and Echegaray, J., Wolf conservation and management in Spain, an open debate, Front. Environ. Sci., 2022, vol. 10. https://doi.org/10.3389/fenvs.2022.781169

  58. Peltola, T. and Heikkilä, J., Outlaws or protected? DNA, hybrids, and biopolitics in a Finnish wolf-poaching case, Soc. Animal., 2018, vol. 26, no. 2, pp. 197–216.

  59. Pilot, M., Jȩdrzejewski, W., Branicki, W., et al., Ecological factors influence population genetic structure of European grey wolves, Mol. Ecol., 2006, vol. 15, no. 14, pp. 4533–4553.

    Article  CAS  Google Scholar 

  60. Pilot, M., Branicki, W.W., Jȩdrzejewski, W., et al., Phylogeographic history of grey wolves in Europe, BMC Evol. Biol., 2010, vol. 10, no. 1, p. 104.

    Article  Google Scholar 

  61. Pilot, M., Ḑabrowski, M.J., Hayrapetyan, V., et al., Genetic variability of the grey wolf Canis lupus in the Caucasus in comparison with Europe and the Middle East: distinct or intermediary population?, PLoS One, 2014a, vol. 9, no. 4, p. e93828.

    Article  Google Scholar 

  62. Pilot, M., Greco, C., vonHoldt, B.M., et al., Genome-wide signatures of population bottlenecks and diversifying selection in European wolves, Heredity, 2014b, vol. 112, no. 4, pp. 428–442.

    Article  CAS  Google Scholar 

  63. Pilot, M., Greco, C., vonHoldt, B.M., et al., Wide-spread, long-term admixture between grey wolves and domestic dogs across Eurasia and its implications for the conservation status of hybrids, Evol. Appl., 2018, vol. 11, pp. 662–680.

    Article  Google Scholar 

  64. Pires, A.E., Amorim, I.R., Borges, C., et al., New insights into the genetic composition and phylogenetic relationship of wolves and dogs in the Iberian Peninsula, Ecol. Evol., 2017, vol. 7, no. 12, pp. 4404–4418.

    Article  Google Scholar 

  65. Pocock, R.I., The races of Canis lupus, Proc. Zool. Soc. London, 1935, vol. 105, no. 3, pp. 647–686.

    Article  Google Scholar 

  66. Pulliainen, E., The status, structure and behaviour of populations of the wolf (Canis l. lupus L.) along the Fenno-Soviet border, Ann. Zool. Fenn., 1980, vol. 17, no. 2, pp. 107–112.

    Google Scholar 

  67. Ramirez, O., Altet, L., Enseñat, C., et al., Genetic assessment of the Iberian wolf Canis lupus signatus captive breeding program, Conserv. Genet., 2006, vol. 7, no. 6, pp. 861–878.

    Article  Google Scholar 

  68. Randi, E., Lucchini, V., Christensen, M.F., et al., Mitochondrial DNA variability in Italian and East European wolves: detecting the consequences of small population size and hybridization, Conserv. Biol., 2000, vol. 14, no. 2, pp. 464–473.

    Article  Google Scholar 

  69. Randi, E. and Lucchini, V., Detecting rare introgression of domestic dog genes into wild wolf (Canis lupus) populations by Bayesian admixture analyses of microsatellite variation, Conserv. Genet., 2002, vol. 3, no. 1, pp. 31–45.

    Article  CAS  Google Scholar 

  70. Ražen, N., Brugnoli, A., Castagna, C., et al., Long-distance dispersal connects Dinaric-Balkan and Alpine grey wolf (Canis lupus) populations, Eur. J. Wildl. Res., 2016, vol. 62, no. 1, pp. 137–142.

    Article  Google Scholar 

  71. Reinhardt, I., Kluth, G., Nowak, S., and Mysłajek, R.W., A Review of Wolf Management in Poland and Germany with Recommendations for Future Transboundary Collaboration, Bonn: Bundesamt für Naturschutz (BfN) Federal Agency for Nature Conservation, 2013.

  72. Salvatori, V., Godinho, R., Braschi, C., et al., High levels of recent wolf × dog introgressive hybridization in agricultural landscapes of central Italy, Eur. J. Wildl. Res., 2019, vol. 65, p. 73.

    Article  Google Scholar 

  73. Sastre, N., Vilà, C., Salinas, M., et al., Signatures of demographic bottlenecks in European wolf populations, Conserv. Genet., 2011, vol. 12, no. 3, pp. 701–712.

    Article  Google Scholar 

  74. Seddon, J.M., Sundqvist, A.K., Björnerfeldt, S., and Ellegren, H., Genetic identification of immigrants to the Scandinavian wolf population, Conserv. Genet., 2006, vol. 7, no. 2, pp. 225–230.

    Article  Google Scholar 

  75. Shakarashvili, M., Kopaliani, N., Gurielidze, Z., et al., Population genetic structure and dispersal patterns of grey wolfs (Canis lupus) and golden jackals (Canis aureus) in Georgia, the Caucasus, J. Zool., 2020, vol. 312, no. 4, pp. 227–238.

    Article  Google Scholar 

  76. Sharma, D.K., Maldonado, J.E., Jhala, Y.V., and Fleischer, R.C., Ancient wolf lineages in India, Proc. R. Soc. B., 2004, vol. 271, no. 3, pp. 2–5.

    Article  Google Scholar 

  77. Silva, P., López-Bao, J.V., Llaneza, L., et al., Cryptic population structure reveals low dispersal in Iberian wolves, Sci. Rep., 2018, vol. 8, no. 1, pp. 1–14.

    Article  Google Scholar 

  78. Sinding, M.H.S., Gopalakrishnan, S., Vieira, F.G., et al., Population genomics of grey wolves and wolf-like canids in North America, PLoS Genet., 2018, vol. 14, no. 11. https://doi.org/10.1371/journal.pgen.1007745

  79. Smeds, L., Aspi, J., Berglund, J., et al., Whole-genome analyses provide no evidence for dog introgression in Fennoscandian wolf populations, Evol. Appl., 2021, vol. 14, no. 3, pp. 721–734.

    Article  CAS  Google Scholar 

  80. Šnjegota, D., Stefanović, M., Veličković, N., et al., Genetic characterization of grey wolves (Canis lupus L. 1758) from Bosnia and Herzegovina: implications for conservation, Conserv. Genet., 2018, vol. 19, no. 3, pp. 755–760.

    Article  Google Scholar 

  81. Šnjegota, D., Stronen, A., Boljte, B., et al., Population genetic structure of wolves in the northwestern Dinaric-Balkan region, Ecol. Evol., 2021, pp. 18492–18504.

  82. Sotnikova, M. and Rook, L., Dispersal of the Canini (Mammalia, Canidae: Caninae) across Eurasia during the Late Miocene to Early Pleistocene, Quat. Int., 2010, vol. 212, no. 2, pp. 86–97.

    Article  Google Scholar 

  83. Stronen, A.V., Jedrzejewska, B., Pertoldi, C., et al., North-south differentiation and a region of high diversity in European wolves (Canis lupus), PLoS One, 2013, vol. 8, no. 10, pp. 1–9.

    Article  Google Scholar 

  84. Stronen, A.V., Jedrzejewska, B., Pertoldi, C., et al., Genome-wide analyses suggest parallel selection for universal traits may eclipse local environmental selection in a highly mobile carnivore, Ecol. Evol., 2015, vol. 5, no. 19, pp. 4410–4425.

    Article  Google Scholar 

  85. Suvorov, A.P. and Kirienko, N.N., On intraspecific polymorphism of the wolf (Canis lupus), inhabiting the territory of Russia, Vestn. KrasGAU, 2008, no. 3, pp. 205–210.

  86. Szewczyk, M., Nowak, S., Niedźwiecka, N., et al., Dynamic range expansion leads to establishment of a new, genetically distinct wolf population in Central Europe, Sci. Rep., 2019, vol. 9, no. 1, pp. 1–16.

    Article  Google Scholar 

  87. Szewczyk, M., Nowak, C., Hulva, P., et al., Genetic support for the current discrete conservation unit of the Central European wolf population, Wildl. Biol., 2021, vol. 2021, no. 2. https://doi.org/10.2981/wlb.00809

  88. Talala, M.S., Bondarev, A.Y., Zakharov, E.S., et al., Genetic differentiation of the wolf Canis lupus L. populations from Siberia at microsatellite loci, Russ. J. Genet., 2020, vol. 56, no. 1, pp. 59–68.

    Article  CAS  Google Scholar 

  89. Taron, U.H., Salado, I., Escobar-Rodríguez, M., et al., A sliver of the past: the decimation of the genetic diversity of the Mexican wolf, Mol. Ecol., 2021, vol. 30, no. 23, pp. 6340–6354.

    Article  Google Scholar 

  90. Torres, R.T. and Fonseca, C., Perspectives on the Iberian wolf in Portugal: population trends and conservation threats, Biodivers. Conserv., 2016, vol. 25, no. 3, pp. 411–425.

    Article  Google Scholar 

  91. Vilà, C., Walker, C., Sundqvist, A.K., et al., Combined use of maternal, paternal and bi-parental genetic markers for the identification of wolf-dog hybrids, Heredity, 2003, vol. 90, no. 1, pp. 17–24.

    Article  Google Scholar 

  92. Volk. Proiskhozhdenie, sistematika, morfologiya, ekologiya (Wolf. Origin, Systematics, Morphology, Ecology) Bibikov, D.I., Ed., Moscow: Nauka, 1985.

  93. vonHoldt, B.M., Stahler, D.R., Smith, D.W., et al., The genealogy and genetic viability of reintroduced Yellowstone grey wolves, Mol. Ecol., 2008, vol. 17, no. 1, pp. 252–274.

    Article  Google Scholar 

  94. vonHoldt, B.M., Stahler, D.R. Bangs, E.E., et al., A novel assessment of population structure and gene flow in grey wolf populations of the Northern Rocky Mountains of the United States, Mol. Ecol., 2010, vol. 19, no. 20, pp. 4412–4427.

    Article  Google Scholar 

  95. Vorobyevskaya, E.A., Baldina, S.N. Altai wolf phylogeography (Canis lupus L.) studied by microsatellite markers, Moscow Univ. Biol. Sci. Bull., 2011, vol. 66, no. 2, pp. 53–54.

    Article  Google Scholar 

  96. Wang, G.D., Zhang, M., Wang, X., et al., Genomic approaches reveal an endemic subpopulation of gray wolves in Southern China, iScience, 2019, vol. 20, pp. 110–118.

  97. Wang, M.S., Thakur, M., Jhala, Y., et al., Genome sequencing of a gray wolf from Peninsular India provides new insights into the evolution and hybridization of gray wolves, Genome Biol. Evol., 2022, vol. 14, no. 2, p. evac012.

  98. Wayne, R.K., Lehman, N., Allard, M.W., and Honeycutt, R.L., Mitochondrial DNA variability of the gray wolf: genetic consequences of population decline and habitat fragmentation, Conserv. Biol., 1992, vol. 6, no. 4, pp. 559–569.

    Article  Google Scholar 

  99. Wayne, R.K. and Brown, D.M., Hybridization and conservation of carnivores, in Carnivore Conservation, Gittleman, J. and Funk, S.M., Macdonald, D.W., Wayne, R.K., Eds., Cambridge, UK: Cambridge Univ. Press, 2001, pp. 145–162.

    Google Scholar 

  100. Werhahn, G., Senn, H., Kaden, J., et al., Phylogenetic evidence for the ancient Himalayan wolf: towards a clarification of its taxonomic status based on genetic sampling from Western Nepal, R. Soc. Open Sci., 2017, vol. 4, no. 6, p. 170186.

    Article  Google Scholar 

  101. Werhahn, G., Senn, H., Ghazali, M., et al., The unique genetic adaptation of the Himalayan wolf to high-altitudes and consequences for conservation, Glob. Ecol. Conserv., 2018, vol. 16, p. e00455.

    Article  Google Scholar 

  102. Werhahn, G., Liu, Y., Meng, Y., et al., Himalayan wolf distribution and admixture based on multiple genetic markers, J. Biogeogr., 2020, vol. 47, no. 6, pp. 1272–1285.

    Article  Google Scholar 

Download references

Funding

The study was supported by the State assignment of the Ministry of Science and Higher Education of the Russian Federation for the Vavilov Institute of General Genetics of the Russian Academy of Sciences no. 0112-2019-0001 and the Russian Foundation for Basic Research, project no. 18-04-01300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Politov.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Makeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazimirov, P.A., Politov, D.V. Intraspecific Genetic Structure of the Gray Wolf, Canis lupus, Linnaeus, 1758—Current State of Knowledge. Biol Bull Rev 12 (Suppl 1), S23–S33 (2022). https://doi.org/10.1134/S2079086422070064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086422070064

Keywords:

Navigation