Skip to main content
Log in

Vascular Epiphytes: Plants That Have Broken Ties with the Ground

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The review addresses the issues of the ecological and botanical phenomenon of epiphytism in vascular plants. The origin of epiphytism, its ecological boundaries, and the modern understanding of the ecomorphological features of epiphytes are discussed. Various approaches to the classification of epiphytes, including the authors, are considered; the relationship between modern English terminology and traditional Russian literature is discussed. The most debatable problems in the understanding of the phenomenon of epiphytism in the international literature are discussed. The mechanisms of the existence of plants that have broken ties with ground sources of mineral nutrition and water are considered. The problems and the degree of study of Crassulacean acid metabolism (CAM) in epiphytes in the context of their xeromorphosis are outlined. The mechanism and the functional role of the formation of suspended soils are considered. The existing theories and debatable problems of mineral nutrition of epiphytes, in particular nitrogen nutrition, are discussed. Various biological aspects of crown development, e.g., diasporology, the structure of epiphytic communities, and the ecosystem role of epiphytes, are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. That is mostly specific for mosses and lichen.

REFERENCES

  1. Abakumov, E.V., Zoogenic pedogenesis as the main biogenic soil process in Antarctica, Russ. Ornitol Zh., 2014, vol. 23, no. 972, pp. 576–584.

    Google Scholar 

  2. Abakumov, E.V., Rodina, O.A., and Eskov, A.K., Humification and humic acid composition of suspended soil in oligotrophous environments in South Vietnam, Appl. Environ. Soil Sci., 2018, vol. 2018, art. ID 1026237.

    Article  CAS  Google Scholar 

  3. Adhikari, Y.P., Fischer, A., and Fischer, H.S., Micro-site conditions of epiphytic orchids in a human impact gradient in Katmandu valley, Nepal, J. Mt. Sci., 2012a, vol. 9, pp. 331–342.

    Article  Google Scholar 

  4. Adhikari, Y.P., Fischer, H.S., and Fischer, A., Host tree utilization by epiphytic orchids in different land-use intensities in Kathmandu Valley, Nepal, Plant Ecol., 2012b, vol. 213, pp. 1393–1412.

    Article  Google Scholar 

  5. Aguirre, A., Guevara, R., García, M., and López, J.C., Fate of epiphytes on phorophytes with different architectural characteristics along the perturbation gradient of Sabal mexicana forests in Veracruz, Mexico, J. Veg. Sci., 2010, vol. 21, pp. 6–15.

    Article  Google Scholar 

  6. Alien, M.R., Rincon, E., Alien, E.B., et al., Observations of canopy bromeliad roots compared with plants rooted in soils of a seasonal tropical forest, Chamela, Jalisco, Mexico, Mycorrhiza, 1993, vol. 4, pp. 27–28.

    Article  Google Scholar 

  7. Annaselvam, J. and Parthasarathy, N., Diversity and distribution of herbaceous vascular epiphytes in a tropical evergreen forest at Varagalaiar, Western Ghats, India, Biodiversity Conserv., 2001, vol. 10, pp. 317–329.

    Article  Google Scholar 

  8. Antibus, K.A. and Lesica, P., Root surface acid phosphatase activities of vascular epiphytes of a Costa Rican rain forest, Plant Soil, 1990, vol. 128, pp. 233–240.

    Article  CAS  Google Scholar 

  9. Arévalo, R. and Betancourt, J., Vertical distribution of vascular epiphytes in four forest types of the Serrania de Chiribiquete, Colombian Guayana, Selbyana, 2006, vol. 27, pp. 175–185.

    Google Scholar 

  10. Arnautova, E.M., Gametofity ravnosporovykh paporotnikov (Gametophytes of Isosporous Ferns), St. Petersburg: S.-Peterb. Gos. Univ., 2008.

  11. Assede, E.P.S., Adomou, A.C., and Sinsin, B., Magnoliophyta, Biosphere Reserve of Pendjari, Atacora Province, Benin, Check List, 2012, vol. 8, pp. 642–661.

    Article  Google Scholar 

  12. Barrow, S.R. and Cockburn, W., Effects of light quantity and quality on the decarboxylation of malic acid in crassulacean acid metabolism photosynthesis, Plant Physiol., 1982, vol. 69, pp. 568–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beattie, G.A., Water relations in the interaction of foliar bacterial pathogens with plants, Ann. Rev. Phytopathol., 2011, vol. 49, pp. 533–555.

    Article  CAS  Google Scholar 

  14. Beguinot, A. and Traverso, G.B., Richerche intorno alle ‘arboricole’ della flora italiana, Nuovo Giorn. Bot. Ital., 1905, vol. 12, pp. 495–589.

    Google Scholar 

  15. Benner, J.W. and Vitousek, P.M., Development of a diverse epiphyte community in response to phosphorus fertilization, Ecol. Lett., 2007, vol. 10, pp. 628–636.

    Article  PubMed  Google Scholar 

  16. Bennett, B.C., Patchiness, diversity, and abundance relationships of vascular epiphytes, Selbyana, 1986, vol. 9, pp. 70–75.

    Google Scholar 

  17. Bennert, H.W., Giers, A., Güldenpfenning, S., Herbik, A., and Katheder, A., Some new observations on the fern flora of the Azores, Fern Gaz., 1992, vol. 14, pp. 146–148.

    Google Scholar 

  18. Bentley B.L. and Carpenter, E.J., Direct transfer of newly fixed nitrogen from free-living epiphyllous microorganisms to their host plant, Oecologia, 1984, vol. 63, pp. 52–56.

    Article  PubMed  Google Scholar 

  19. Benzing, D.H., Bark surfaces and the origin and maintenance of diversity among angiosperm epiphytes: a hypothesis, Selbyana, 1981, vol. 5, pp. 248–255.

    Google Scholar 

  20. Benzing, D.H., Origins of orchid diversity: emphasis on floral biology leads to misconceptions, Lindleyana, 1986a, vol. 1, no. 2, pp. 73–89.

    Google Scholar 

  21. Benzing, D.H., The vegetative basis of vascular epiphytism, Selbyana, 1986b, vol. 9, pp. 23–43.

    Google Scholar 

  22. Benzing, D.H., Vascular epiphytism: taxonomic participation and adaptive diversity, Ann. Mo. Bot. Gard., 1987, vol. 74, pp. 183–204.

    Article  Google Scholar 

  23. Benzing, D.H., Vascular Epiphytes: General Biology and Related Biota, Cambridge: Cambridge Univ. Press, 1990.

    Book  Google Scholar 

  24. Benzing, D.H., Aerial roots and their environments, in Plant Roots: The Hidden Half, Waisel, Y., Eshel, A., and Kafkafi, U., Eds., New York: Marcel Dekker, 1996, pp. 875–894.

    Google Scholar 

  25. Benzing, D.H., Bromeliaceae: Profile of an Adaptive Radiation, Cambridge: Cambridge Univ. Press, 2000.

    Book  Google Scholar 

  26. Benzing, D.H. and Renfrow, A., The mineral nutrition of Bromeliaceae, Bot. Gaz., 1974, vol. 135, pp. 281–288.

    Article  CAS  Google Scholar 

  27. Benzing, D.H. and Sheemann, J., Nutritional piracy and host decline: a new perspective on the epiphyte-host relationship, Selbyana, 1978, vol. 2, pp. 133–148.

    Google Scholar 

  28. Benzing, D.H., Henderson, K., Kessel, B., and Sulak, J., The absorptive capacities of bromeliad trichomes, Am. J. Bot., 1976, vol. 63, pp. 1009–1014.

    Article  Google Scholar 

  29. Benzing, D.H., Friedman, W.E., Peterson, G., and Renfrew, A., Shoodessness, velamentous roots, and the pre-eminence of Orchidaceae in the epiphytic biotope, Am. J. Bot., 1983, vol. 70, pp. 121–133.

    Article  CAS  PubMed  Google Scholar 

  30. Berg, L.S., Geograficheskie zony Sovetskogo Soyuza (Geographical Zones of the Soviet Union), Moscow: Geografgiz, 1952, vol. 2.

  31. Bermudes, D. and Benzing, D.H., Fungi in neotropical epiphyte roots, Biosystems, 1989, vol. 23, pp. 65–74.

    Article  CAS  PubMed  Google Scholar 

  32. Bermudes, D. and Benzing, D.H., Nitrogen fixation in association with Ecuadorian bromeliads, J. Trop. Ecol., 1991, vol. 7, pp. 531–538.

    Article  Google Scholar 

  33. Boelter, C.R., Dambros, C.S., Nascimento, H.E.M., and Zartman, C.E., A tangled web in tropical tree-tops: effects of edaphic variation, neighbourhood phorophyte composition and bark characteristics on epiphytes in a central Amazonian forest, J. Veg. Sci., 2014, vol. 25, pp. 1090–1099.

    Article  Google Scholar 

  34. Bohlman, S.A., Matelson, T.J., and Nadkarni, N.M., Moisture and temperature patterns of canopy humus and forest floor soil of a montane cloud forest, Costa Rica, Biotropica, 1995, vol. 27, pp. 13–19.

    Article  Google Scholar 

  35. Bone, R.E., Smith, J.A., Arrigo, N., and Buerki, S., A macro-ecological perspective on crassulacean acid metabolism (CAM) photosynthesis evolution in Afro-Madagascan drylands: eulophiinae orchids as a case stud, New Phytol., 2015, vol. 208, pp. 469–481.

    Article  CAS  PubMed  Google Scholar 

  36. Brighigna, L., Montini, P., Favilli, F., and Carabez Trejo, A., Role of the nitrogen-fixing bacterial microflora in the epiphytism of Tillandsia (Bromeliaceae), Am. J. Bot., 1992, vol. 79, pp. 723–727.

    Article  Google Scholar 

  37. Brisseau-Mirbel, C.F., Élémens de Physiologie Végétale et de Botanique, Paris: Magimel, 1815, part 2.

  38. Burns, K.C., How arboreal are epiphytes? A null model for Benzing’s classifications, N. Z. J. Bot., 2010, vol. 48, nos. 3–4, pp. 185–191.

    Article  Google Scholar 

  39. Campbell, D.H., An Outline of Plant Geography, New York: Macmillan, 1926.

    Google Scholar 

  40. Cardelús, C.L., Colwell, R.K., and Watkins, J.E., Vascular epiphyte distribution patterns: Explaining the mid-elevation richness peak, J. Ecol., 2006, vol. 94, pp. 144–156.

    Article  Google Scholar 

  41. Cardelús, C.L. and Mack, M.C., The nutrient status of epiphytes and their host trees along an elevational gradient in Costa Rica, Plant Ecol., 2010, vol. 207, pp. 25–37.

    Article  Google Scholar 

  42. Carlsen, M., Structure and diversity of the vascular epiphyte community in the overstory of a tropical rain forest in Surumoni, Amazonas State, Venezuela, Selbyana, 2000, vol. 21, pp. 7–10.

    Google Scholar 

  43. Cascante-Marín, A., Wolf, J.H.D., Oostermeijer, J.G.B., den Nijs, J.C.M., Sanahuja, O., and Durán-Apuy, A., Epiphytic bromeliad communities in secondary and mature forest in a tropical premontane area, Basic Appl. Ecol., 2006, vol. 7, pp. 520–532.

    Article  Google Scholar 

  44. Ceusters, J., Borland, A.M., Godts, C., Londers, E., Croonenborgs, S., et al., Crassulacean acid metabolism under severe light limitation: a matter of plasticity in the shadows? J. Exp. Bot., 2011, vol. 62, pp. 283–291.

    Article  CAS  PubMed  Google Scholar 

  45. Chen, L., Liu, W., and Wang, G., Estimation of epiphytic biomass and nutrient pools in the subtropical montane cloud forest in the Ailao Mountains, south-western China, Ecol. Res., 2010, vol. 25, no. 2, pp. 315–325.

    Article  Google Scholar 

  46. Chertov, O.G., Mathematical model of the ecosystem of single plant, Zh. Obshch. Biol., 1983, vol. 44, no. 3, pp. 406–414.

    CAS  Google Scholar 

  47. Chomicki, G. and Renner, S.S., Partner abundance controls mutualism stability and the pace of morphological change over geologic time, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, no. 15, pp. 3951–3956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chomicki, G., and Renner, S.S., Farming by ants remodels nutrient uptake in epiphytes, New Phytol., 2019, vol. 223, no. 4, pp. 2011–2023.

    Article  PubMed  Google Scholar 

  49. Chomicki, G., Janda, M., and Renner, S.S., The assembly of ant-farmed gardens: mutualism specialization following host broadening, Proc. R. Soc. B, 2017, vol. 284, no. 1850, art. ID 20161759.

  50. Clark, K.L., Nadkarni, N.M., Schaefer, D., and Gholz, H.L., Atmospheric deposition and net retention of ions by the canopy in a tropical montane forest, Monteverde, Costa Rica, J. Trop. Ecol., 1998, vol. 14, pp. 27–45.

    Article  Google Scholar 

  51. Clark, K., Nadkarni, N., and Gholz, H., Retention of inorganic nitrogen by epiphytic bryophytes in a tropical montane forest, Biotropica, 2005, vol. 37, pp. 328–336.

    Article  Google Scholar 

  52. Clarkson, D.T., Kiniper, P.J.C., and Luttge, U., Mineral nutrition: sources of nutrients for land plants from outside the pedosphere, Prog. Bot., 1986, vol. 48, pp. 81–96.

    Google Scholar 

  53. Cockburn, W., Goh, C.J., and Avadhani, P.N., Photosynthetic carbon assimilation in a shootless orchid, Chiloschista usneoides (DON) LDL: a variant on Crassulacean acid metabolism, Plant Physiol., 1985, vol. 77, no. 1, pp. 83–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Coxson, D. and Nadkarni, N.M., Ecological roles of epiphytes in nutrient cycles of forest ecosystems, in Forest Canopies, Lowman, M. and Nadkarni, N., Eds., San Diego: Academic, 1995, pp. 495–543.

    Google Scholar 

  55. Crayn, D.M., Winter, K., and Smith, J.A.C., Multiple origins of crassulacean acid metabolism and the epiphytic habit in the neotropical family Bromeliaceae, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 3703–3708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Crayn, D.M., Winter, K., Schulte, K., and Smith, J.A.C., Photosynthetic pathways in Bromeliaceae: phylogenetic and ecological significance of CAM and C3 based on carbon isotope ratios for 1893 species, Bot. J. Linn. Soc., 2015, vol. 178, pp. 169–221.

    Article  Google Scholar 

  57. Croat, T.B., Flora of Barro Colorado Island, Stanford: Stanford Univ. Press, 1978.

    Google Scholar 

  58. DaRocha, W.D., Ribeiro, S.P., Neves, F.S., Fernandes, G.W., Leponce, M., and Delabie, J.H.C., How does bromeliad distribution structure the arboreal ant assemblage (Hymenoptera: Formicidae) on a single tree in a Brazilian Atlantic forest agroecosystem? Myrmecol. News, 2015, vol. 21, pp. 83–92.

    Google Scholar 

  59. Davidson, D.W. and Epstein, W.W., Epiphytic associations with ants, in Vascular Plants as Epiphytes, Lüttge, U., Ed., Berlin: Springer-Verlag, 1989, pp. 200–233.

    Google Scholar 

  60. Derzhavina, N.M., Experience of a synthetic approach to an ecological classification of vascular epiphytes, Contemp. Probl. Ecol., 2019, vol. 12, no. 5, pp. 434–443.

    Article  Google Scholar 

  61. Dighe, S., Raval, M., and Shah, A.K., Detection of nitrogen-fixing ability in an epiphytic orchid Vanda testacea (Linde) Reichb. F., Proc. Indian Natl. Sci. Acad., 1986, vol. 52, pp. 515–517.

    CAS  Google Scholar 

  62. Ehleringer, J.R., Hall, A.E., and Farquahr, G.D., Stable Isotopes and Plant-Water Relations, San Diego: Academic, 1993.

    Google Scholar 

  63. Ellis, C.J., Lichen epiphyte diversity: a species, community and trait-based review, Perspect. Plant Ecol. Evol. Syst., 2012, vol. 14, pp. 131–152.

    Article  Google Scholar 

  64. Eskov, A.K., Ecophysiological classification of vascular epiphytes as a theoretical background for the development of collections and communities of epiphytic plants in a greenhouse culture, Estestv. Tekh. Nauki, 2012, no. 4, pp. 93–98.

  65. Eskov, A.K., Epiphytic communities in tree formations of Southern Vietnam: analysis of species composition and dependence on the degree of anthropogenic impact, Zh. Obshch. Biol., 2013, vol. 74, no. 5, pp. 386–398.

    CAS  Google Scholar 

  66. Eskov, A.K., Growth and functional role of aerial roots of flowering epiphytes, Cand. Sci. (Biol.) Dissertation, Moscow: Main Bot. Garden, Russ. Acad. Sci., 2018.

  67. Eskov, A.K. and Dubovikov, D.A., Community of myrmecophilous epiphytes of Kerangas formation of Borneo, Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 2015, vol. 120, no. 4, pp. 60–69.

    Google Scholar 

  68. Eskov, A.K., Abakumov, E.V., Tiunov, A.V., Kuznetsova, O.V., Dubovikov, D.A., et al., Ageotropic aerial roots as collectors of nest epiphytes, and their role in the formation of suspended soils, Zh. Obshch. Biol., 2017, vol. 78, no. 3, pp. 54–68.

    Google Scholar 

  69. Eskov, A.K., Onipchenko, V.G., Prilepsky, N.G., Abakumov, E.V., Kolomeitseva, G.L., et al., Dependence of epiphytic community on autochthonous and allochthonous sources of nitrogen in three forest habitats of Southern Vietnam, Plant Soil, 2019b, vol. 443, nos. 1–2, pp. 565–574.

    Article  CAS  Google Scholar 

  70. Eskov, A.K., Prilepsky, N.G., Antipina, V.A., Abakumov, E.V., and Van Thinh, N., Formation of epiphytic communities in man-made forests of South Vietnam, Russ. J. Ecol., 2020a, vol. 51, no. 1, pp. 206–214.

    Article  CAS  Google Scholar 

  71. Eskov, A.K., Voronina, E.Yu., Tedersoo, L., Tiunov, A.V., Manh, V., et al., Orchid epiphytes do not receive organic substances from living trees through fungi, Mycorrhiza, 2020b, vol. 30, pp. 697–704.

    Article  PubMed  Google Scholar 

  72. Eskov, A.K., Zverev, A.O., and Abakumov, E.V., Microbiomes in suspended soils of vascular epiphytes differ from terrestrial soil microbiomes and from each other, Microorganisms, 2021, vol. 9, no. 5, art. ID 1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Farrar, D.R. and Mickel, J.T., Vittaria appalachiana: a name for the “Appalachian gametophyte,” Am. Fern J., 1991, vol. 81, pp. 69–75.

    Article  Google Scholar 

  74. Fedorov, A.A., Tree epiphytes and strangler ficuses in the tropical forests of China, Bot. Zh., 1959, vol. 44, no. 10, рр. 1409–1424.

  75. Fliche, M.P., Note sur l’epiphytisme du Polypodium vulgare L., Bull. Soc. Bot. Fr., 1902, vol. 49, no. 1, pp. 53–64.

    Article  Google Scholar 

  76. Fomin, A.V., Genus Polypodium L., in Flora SSSR. Tom 1. Sporovye, golosemennye, Typhaceae, Hydrocharitaceae (Flora of the USSR, Vol. 1: Cryptogams, Gymnosperms, Typhaceae, Hydrocharitaceae), Il’in, M.M., Ed., Leningrad: Akad. Nauk SSSR, 1934, pp. 84–86.

  77. Forel, A., In und mit Pflanzen lebende Ameisen aus dem Amazonas-Gebiet und aus Peru, gesammelt von Herrn E. Ule, Zool. Jahrb. Abt. Syst., 1904, vol. 20, pp. 679–707.

    Google Scholar 

  78. Forman, R.T.T., Canopy lichens with blue-green algae: a nitrogen source in a Colombian rainforest, Ecology, 1975, vol. 56, pp. 1176–1184.

    Article  Google Scholar 

  79. Friesen, M.L., Porter, S.S., Stark, S.C., Wettberg, E.J., Sachs, J.L., and Martinez-Romero, E., Microbially mediated plant functional traits, Annu. Rev. Ecol. Evol. Syst., 2011, vol. 42, pp. 23–46.

    Article  Google Scholar 

  80. Frouz, J. and Jílková, V., The effect of ants on soil properties and processes (Hymenoptera: Formicidae), Myrmecol. News, 2008, vol. 1, pp. 191–199.

    Google Scholar 

  81. Garth, R.E., The ecology of Spanish moss (Tillandsia usneoides): its growth and distribution, Ecology, 1964, vol. 45, no. 3, pp. 470−481.

    Article  Google Scholar 

  82. Gay, H., Ant-houses in the fern genus Lecanopteris Reinw. (Polypodiaceae)—the rhizome morphology and architecture of L. sarcopus Teijsm and Binned and L. darnaedii Hennipman, Bot. J. Linn. Soc., 1991, vol. 106, pp. 199–208.

    Article  Google Scholar 

  83. Gay, H., Animal-fed plants—an investigation into the uptake of ant-derived nutrients by the Far-Eastern epiphytic fern Lecanopteris Reinw. (Polypodiaceae), Biol. J. Linn. Soc., 1993a, vol. 50, pp. 221–233.

    Article  Google Scholar 

  84. Gay, H., Rhizome structure and evolution in the ant-associated epiphytic fern Lecanopteris Reinw. (Polypodiaceae), Bot. J. Linn. Soc., 1993b, vol. 113, pp. 135–160.

    Article  Google Scholar 

  85. Gay, H. and Hensen, R., Ant specificity and behavior in mutualisms with epiphytes: the case of Lecanopteris (Polypodiaceae), Biol. J. Linn. Soc., 1992, vol. 47, pp. 261–284.

    Article  Google Scholar 

  86. Gentry, A.H. and Dodson, C.H., Diversity and biogeography of neotropical vascular epiphytes, Ann. Mo. Bot. Gard., 1987, vol. 74, no. 2, pp. 205–233.

    Article  Google Scholar 

  87. Gibernau, M., Orivel, J., Delabie, J., Barabé, D., and Dejean, A., An asymmetrical relationship between an arboreal ponerine ant and a trash-basket epiphyte (Araceae), Biol. J. Linn. Soc., 2007, vol. 91, no. 3, pp. 341–346.

    Article  Google Scholar 

  88. Golubev, V.N., Short-rhizome plants, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1958, vol. 63, no. 3, pp. 97–103.

    Google Scholar 

  89. Gomes-da-Silva, J. and da Costa, A.F.A., Taxonomic revision of Vriesea corcovadensis group (Bromeliaceae: Tillandsioideae) with description of two new species, Syst. Bot., 2011, vol. 36, no. 2, pp. 291–309.

    Article  Google Scholar 

  90. Gómez, L.D., Biology of the potato-fern Solanopteris brunei, Brenesia, 1974, vol. 4, pp. 37–61.

    Google Scholar 

  91. Gómez, L.D., The Azteca ants of Solanopteris brunei, Am. Fern J., 1977, vol. 67, p. 31.

    Article  Google Scholar 

  92. Goode, L.K. and Allen, M.F., The impacts of Hurricane Wilma on the epiphytes of El Edén Ecological Reserve, Quintana Roo, Mexico, J. Torrey Bot. Soc., 2008, vol. 135, pp. 377–387.

    Article  Google Scholar 

  93. Goryshina, T.K., Ekologiya rastenii (Ecology of Plants), Moscow: Vysshaya Shkola, 1979.

  94. Gotsch, S.G., Nadkarni, N., Darby, A., Glunk, A., Dix, M., et al., Life in the treetops: ecophysiological strategies of canopy epiphytes in a tropical montane cloud forest, Ecol. Monogr., 2015, vol. 85, no. 3, pp. 393–412.

    Article  Google Scholar 

  95. Gotsch, S.G., Nadkarni, N., and Amici, A., The functional roles of epiphytes and arboreal soils in tropical montane cloud forests, J. Trop. Ecol., 2016, vol. 32, no. 5, pp. 455–468.

    Article  Google Scholar 

  96. Gottsberger, G. and Morawetz, W., Development and distribution of the epiphytic flora in an Amazonian savanna in Brazil, Flora, 1993, vol. 188, pp. 145–151.

    Article  Google Scholar 

  97. Griffiths, H., Stable Isotopes: The Integration of Biological, Ecological and Geochemical Processes, Oxford: BIOS Sci., 1998.

    Google Scholar 

  98. Griffiths, H. and Smith, J.A.C., Photosynthetic pathways in the Bromeliaceae of Trinidad: relations between life-forms, habitat preference and the occurrence of CAM, Oecologia, 1983, vol. 60, pp. 176–184.

    Article  PubMed  Google Scholar 

  99. Grubb, P.J., Control of forest growth and distribution on wet tropical mountains, Annu. Rev. Ecol. Syst., 1977, vol. 8, pp. 83–107.

    Article  CAS  Google Scholar 

  100. Haufler, C.H., Grammer, W.A., Hennipman, E., Ranker, T.A., Smith, A.R., and Schneider, H., Systematics of the ant-fern genus Lecanopteris (Polypodiacee): testing phylogenetic hypotheses with DNA sequences, Syst. Bot., 2003, vol. 28, pp. 217–227.

    Google Scholar 

  101. Hempfling, R., Simmleit, N., and Schulten, H.R., Characterization and chemodynamics of plant constituents during maturation, senescence and humus genesis in spruce ecosystems, Biogeochemistry, 1991, vol. 13, pp. 27–60.

    Article  CAS  Google Scholar 

  102. Hietz, P., Population dynamics of epiphytes in a Mexican humid montane forest, J. Ecol., 1997, vol. 85, pp. 767–775.

    Article  Google Scholar 

  103. Hietz, P., Wanek, W., and Popp, M., Stable isotopic composition of carbon and nitrogen and nitrogen content in vascular epiphytes along an altitudinal transect, Plant Cell Environ., 1999, vol. 22, pp. 1435–1443.

    Article  Google Scholar 

  104. Hietz, P., Wanek, W., Wania, R., and Nadkarni, N.M., Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition, Oecologia, 2002, vol. 131, pp. 350–355.

    Article  PubMed  Google Scholar 

  105. Hirata, A., Kamijo, T., and Saito, S., Host trait preferences and distribution of vascular epiphytes in a warm-temperate forest, Plant Ecol., 2009, vol. 201, pp. 247–254.

    Article  Google Scholar 

  106. Hoeber, V., Weichgrebe, T., and Zotz, G., Accidental epiphytism in the Harz Mountains, Central Europe, J. Veg. Sci., 2019, vol. 30, no. 4, pp. 765–775.

    Article  Google Scholar 

  107. Hoelscher, D., Kohler, L., van Dijk, A.I., and Bruijnzeel, L.S., The importance of epiphytes to total rainfall interception by a tropical montane rain forest in Costa Rica, J. Hydrol., 2004, vol. 292, pp. 308–322.

  108. Hofstede, R.G.M., Wolf, J.H.D., and Benzing, D.H., Epiphytic biomass and nutrient status of a Colombian upper montane rain forest, Selbyana, 1993, vol. 14, pp. 37–45.

    Google Scholar 

  109. Högberg, P., 15N natural abundance in soil-plant systems, New Phytol., 1997, vol. 137, pp. 179–203.

    Article  PubMed  Google Scholar 

  110. Holtum, J.A.M., Winter, K., Weeks, M.A., and Sexton, T.R., Crassulacean acid metabolism of the ZZ plant, Zamioculcas zamiifolia (Araceae), Am. J. Bot., 2007, vol. 94, pp. 1670–1676.

    Article  CAS  PubMed  Google Scholar 

  111. Ibisch, P.L., Neotropische Epiphytendiversitat: das Beispiel Bolivien, Wiehl: Martina Galunder-Verlag, 1996.

  112. ITTO Guidelines for the Restoration, Management and Rehabilitation of Degraded and Secondary Tropical Forests, Yokohama: Int. Trop. Timber Org., 2002.

  113. Irume, M.V., de Lourdes da Costa Soares Morais, M., Zartman, C.E., and Amaral, I.L.D., Floristic composition and community structure of epiphytic angiosperms in a terra firme forest in central Amazonia, Acta Bot. Bras., 2013, vol. 27, pp. 378–393.

    Article  Google Scholar 

  114. Jacome, J., Galeano, G., Amaya, M., and Mora, M., Vertical distribution of epiphytic and hemiepiphytic Araceae in a tropical rain forest in Chocó, Colombia, Selbyana, 2004, vol. 25, pp. 118–125.

    Google Scholar 

  115. Janos, D.P., Vesicular-arbuscular mycorrhizae of epiphytes, Mycorrhiza, 1993, vol. 4, pp. 1–4.

    Article  Google Scholar 

  116. Janzen, D.H., Epiphytic myrmecophytes in Sarawak: mutualism through the feeding of plants by ants, Biotropica, 1974, vol. 6, no. 4, pp. 237–259.

    Article  Google Scholar 

  117. Johansson, D.R., Ecology of Vascular Epiphytes in West African Rain Forest, Acta Phytogeogr. Suec., vol. 59, Uppsala: Svenska Växtgeografiska Sällskapet, 1974.

  118. Johansson, D.R., Ecology of epiphytic orchids in west African rain forests, Am. Orchid Soc. Bull., 1975, vol. 44, no. 2, pp. 125–136.

    Google Scholar 

  119. Johansson, D.R., A method to register the distribution of epiphytes on the host tree, Am. Orchid Soc. Bull., 1978, vol. 47, no. 10, pp. 901–904.

    Google Scholar 

  120. Jones, J.D.G. and Dangl, J.L., The plant immune system, Nature, 2006, vol. 444, pp. 323–329.

    Article  CAS  PubMed  Google Scholar 

  121. Kembel, S.W., O’Connor, T.K., Arnold, H.K., Hubbell, S.P., Wright, S.J., and Green, J.L., Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, pp. 13715–13720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kirby, C., Field Guide to New Zealand’s Epiphytes, Vines & Mistletoes, Hamilton: Environ. Res. Inst., Univ. of Waikato, 2014.

    Google Scholar 

  123. Kluge, J. and Kessler, M., Influence of niche characteristics and forest type on fern species richness, abundance and plant size along an elevational gradient in Costa Rica, Plant Ecol., 2011, vol. 212, pp. 1109–1121.

    Article  Google Scholar 

  124. Kolomeitseva, G.L., Morphological types of orchids, Byull. Gl. Bot. Sada, 2003, no. 185, pp. 112–137.

  125. Kolomeitseva, G.L., Morphological-ecological features of adaptation of tropical orchids during introduction, Doctoral (Biol.) Dissertation, Moscow: Main Bot. Garden, Russ. Acad. Sci., 2006.

  126. Kolomeitseva, G.L., Antipina, V.A., Shirokov, A.I., Khomutovskii, M.I., Babosha, A.V., and Ryabchenko, A.S., Semena orkhideiy: razvitie, struktura, prorastaniie (Orchid Seeds: Development, Structure, and Germination), Moscow: GEOS, 2012.

  127. Koptur, S., Rico-Gray, V., and Palacios-Rios, M., Ant protection of the nectaried fern Polypodium plebeium in central Mexico, Am. J. Bot., 1998, vol. 85, pp. 736–739.

    Article  CAS  PubMed  Google Scholar 

  128. Kоhler, L., Tobon, C., Frumau, K.A., and Bruijnzeel, L.S., Biomass and water storage dynamics of epiphytes in old-growth and secondary montane cloud forest stands in Costa Rica, Plant Ecol., 2007, vol. 193, no. 2, pp. 171–184.

  129. Köster, N., Friedrich, K., Nieder, J., and Barthlott, W., Conservation of epiphyte diversity in an Andean landscape transformed by human land use, Conserv. Biol., 2009, vol. 23, pp. 911–919.

    Article  PubMed  Google Scholar 

  130. Kress, W.J., A symposium: the biology of tropical epiphytes, Selbyana, 1986, vol. 9, pp. 1–22.

    Google Scholar 

  131. Krömer, T. and Gradstein, S.R., Vascular epiphytes, in Core Standardized Methods for Rapid Biological Field Assessment, Larsen, T.H., Ed., Arlington: Conserv. Int., 2016, pp. 25–36.

    Google Scholar 

  132. Krömer, T., Kessler, M., Gradstein, S.R., and Acebey, A., Diversity patterns of vascular epiphytes along an elevational gradient in the Andes, J. Biogeogr., 2005, vol. 32, pp. 1799–1809.

    Article  Google Scholar 

  133. Kunkel, G., Die Kanarischen Inseln und ihre Pflanzenwelt, Stuttgart: G. Fischer, Verlag, 1993.

    Google Scholar 

  134. Ladino, G., Bautista, F.O., Varón, J.E., Jerabkova, L., and Kratina, P., Ecosystem services provided by bromeliad plants: a systematic review, Ecol. Evol., 2019, vol. 9, pp. 7360–7373.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Lambers, H., Chapin, F.S. III, and Pons, T., Plant Physiological Ecology, New York: Springer-Verlag, 2008.

    Book  Google Scholar 

  136. Lasso, E. and Ackerman, J., Nutrient limitation restricts growth and reproductive output in a tropical montane cloud forest bromeliad: findings from a long-term forest fertilization experiment, Oecologia, 2013, vol. 171, pp. 165–174.

    Article  PubMed  Google Scholar 

  137. Laube, S. and Zotz, G., Which abiotic factors limit vegetative growth in a vascular epiphyte? Funct. Ecol., 2003, vol. 17, pp. 598–604.

    Article  Google Scholar 

  138. Laube, S. and Zotz, G., A metapopulation approach to the analysis of long-term changes in the epiphyte vegetation on the host tree Annona glabra, J. Veg. Sci., 2007, vol. 18, pp. 613–624.

    Article  Google Scholar 

  139. Leao, T.C.C., Fonseca, C.R., Peres, C.A., and Tabarelli, M., Predicting extinction risk of Brazilian Atlantic forest angiosperms, Conserv. Biol., 2014, vol. 28, pp. 1349–1359.

    Article  PubMed  Google Scholar 

  140. Li, C.R., Gan, L.J., Xia, K., Zhou, X., and Hew, C.S., Responses of carboxylating enzymes, sucrose metabolizing enzymes and plant hormones in a tropical epiphytic CAM orchid to CO2 enrichment, Plant Cell. Environ., 2002, vol. 25, pp. 369–377.

  141. Linares-Palomino, R., Cardona, V., Hennig, E.I., Hensen, I., Hoffmann, D., et al., Non-woody life-form contribution to vascular plant species richness in a tropical American forest, Plant Ecol., 2009, vol. 201, pp. 87–99.

    Article  Google Scholar 

  142. Lindo, Z. and Whiteley, J.A., Old trees contribute bio-available nitrogen through canopy bryophytes, Plant Soil, 2011, vol. 342, nos. 1–2, pp. 141–148.

    Article  CAS  Google Scholar 

  143. Lindo, Z. and Winchester, N.N., A comparison of microarthropod assemblages with emphasis on oribatid mites in canopy suspended soils and forest floors associated with ancient western redcedar trees, Pedobiologia, 2006, vol. 50, pp. 31–41.

    Article  Google Scholar 

  144. Lindo, Z. and Winchester, N.N., Oribatid mite communities and foliar litter decomposition in canopy suspended soils and forest floor habitats of western redcedar forests, Vancouver Island, Canada, Soil Biol. Biochem., 2007, vol. 39, pp. 2957–2966.

    Article  CAS  Google Scholar 

  145. Löbel, S., Snäll, T., and Rydin, H., Metapopulation processes in epiphytes inferred from patterns of regional distribution and local abundance in fragmented forest landscapes, J. Ecol., 2006, vol. 94, pp. 856–868.

    Article  Google Scholar 

  146. Lüttge, U., Vascular Plants as Epiphytes: Evolution and Ecophysiology, Berlin: Springer-Verlag, 1989.

    Book  Google Scholar 

  147. Lyubarskii, E.L., Biomorphological differences between long-rhizome and short-rhizome plants, Ekologiya, 1973, no. 2, pp. 94–95.

  148. Martin, A., Balesdent, J., and Mariotti, A., Earthworm diet related to soil organic matter dynamics through 13C measurements, Oecologia, 1992, vol. 91, pp. 23–29.

    Article  PubMed  Google Scholar 

  149. Martin, A., Mariotti, A., Balesdent, J., et al., Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements, Soil Biol. Biochem., 1990, vol. 22, pp. 517–523.

    Article  Google Scholar 

  150. Matelson, T.J., Nadkarni, N.M., and Longino, J.T., Longevity of fallen epiphytes in a neotropical montane forest, Ecology, 1993, vol. 74, pp. 265–269.

    Article  Google Scholar 

  151. Mazurenko, M.T. and Khokhryakov, A.P., Some concepts of biomorphology, Byull. Bot. Sada-Inst., Dal’nevost. Otd., Ross. Akad. Nauk, 2010, no. 5, pp. 106–116.

  152. Medina, E., CAM and C4 plants in the humid tropics, in Tropical Forest Plant Ecophysiology, Mulkey, S.S., Chazdon, R.L., and Smith, A.P., Eds., Boston: Springer-Verlag, 1996, pp. 56–88.

    Google Scholar 

  153. Mehltreter, K., Flores-Palacios, A., Garcia-Franco, J.G., Host preferences of low-trunk vascular epiphytes in a cloud forest of Veracruz, Mexico, J. Trop. Ecol., 2005, vol. 21, no. 6, pp. 651–660.

  154. Mendieta-Leiva, G. and Zotz, G., A conceptual framework for the analysis of vascular epiphyte assemblages, Perspect. Plant Ecol. Evol. Syst., 2015, vol. 17, no. 6, pp. 510–521.

    Article  Google Scholar 

  155. Moffett, M.W., What’s “up”? A critical look at the basic terms of canopy biology, Biotropica, 2000, vol. 32, no. 4, pp. 569–596.

    Article  Google Scholar 

  156. Monteiro, J.A.F., Zotz, G., and Körner, C., Tropical epiphytes in a CO2-rich atmosphere, Acta Oecol., 2009, vol. 35, pp. 60–68.

    Article  Google Scholar 

  157. Morat, P., Veillon, J.M., and MacKee, H.S., Floristic relationships of New Caledonian rain forest phanerogams, in Biogeography of the Tropical Pacific, Radovsky, F.J., Raven, P.H., and Sohmer, S.H., Eds., Honolulu: Bernice P. Bishop Mus., 1984, pp. 71–128.

    Google Scholar 

  158. Mori, S.A., Hecklau, E.F., and Kirchgessner, T., Life form, habitat, and nutritional mode of the flowering plants of central French Guiana, J. Torrey Bot. Soc., 2002, vol. 129, no. 4, pp. 331–345.

    Article  Google Scholar 

  159. Motomura, H., Yukawa, T., Ueno, O., and Kagawa, A., The occurrence of crassulacean acid metabolism in Cymbidium (Orchidaceae) and its ecological and evolutionary implications, J. Plant Res., 2008, vol. 121, pp. 163–177.

    Article  CAS  PubMed  Google Scholar 

  160. Nadkarni, N.M., Epiphyte biomass and nutrient capital of a neotropical elfin forest, Biotropica, 1984, vol. 16, pp. 249–256.

    Article  Google Scholar 

  161. Nadkarni, N.M., The nutritional effects of epiphytes on host trees with special reference to alteration of recipitation chemistry, Selbyana, 1986, vol. 9, pp. 44–51.

    Google Scholar 

  162. Nadkarni, N.M. and Matelson, T.J., Biomass and nutrient dynamics of epiphytic litterfall in a neotropical montane forest, Costa Rica, Biotropica, 1992, vol. 24, pp. 24–30.

    Article  Google Scholar 

  163. Nadkarni, N.M., Cobb, A.R., and Solano, R., Interception and retention of macroscopic bryophyte fragments by branch substrates in a tropical cloud forest: an experimental and demographic approach, Oecologia, 2000a, vol. 122, pp. 60–65.

    Article  CAS  PubMed  Google Scholar 

  164. Nadkarni, N.M., Lawton, R.O., Clark, K.L., Matelson, T.J., and Schaefer, D.S., Ecosystem ecology and forest dynamics, in Monteverde: Ecology and Conservation of a Tropical Cloud Forest, Nadkarni, N. and Wheelwright, N., Eds., Oxford: Oxford Univ. Press, 2000b, pp. 303–350.

    Book  Google Scholar 

  165. Nadkarni, N.M., Schaefer, D., Matelson, T.J., and Solano, R., Biomass and nutrient pools of canopy and terrestrial components in a primary and a secondary montane cloud forest, Costa Rica, For. Ecol. Manage., 2004, vol. 198, no. 1, pp. 223–236.

    Article  Google Scholar 

  166. Nakanishi, A., Sungpalee, W., Sri-Ngernyuang, K., and Kanzaki, M., Large variations in composition and spatial distribution of epiphyte biomass on large trees in a tropical montane forest of northern Thailand, Plant Ecol., 2016, vol. 217, no. 9, pp. 1157–1169.

    Article  Google Scholar 

  167. Nieder, J. and Barthlott, W., Epiphytes and their role in the tropical forest canopy, in Epiphytes and Canopy Fauna of the Otonga Rain Forest (Ecuador), Bonn: Bot. Inst. Univ. Bonn, 2001, pp. 23–86.

    Google Scholar 

  168. Nieder, J., Engwald, S., Klawun, M., and Barthlott, W., Spatial distribution of vascular epiphytes (including hemiepiphytes) in a lowland Amazonian rain forest (Surumoni crane plot) of southern Venezuela, Biotropica, 2000, vol. 32, pp. 385–396.

    Article  Google Scholar 

  169. Nukhimovskii, E.L., Osnovy biomorfologii semennykh rastenii. Tom I. Teoriya organizatsii biomorf (Fundamentals of Biomorphology of Seed Plants, Vol. 1: Theory of Organization of Biomorphs), Moscow: Nedra, 1997.

  170. Nukhimovskii, E.L., Osnovy biomorfologii semennykh rastenii. Tom II. Gabitus i formy rosta v organizatsii biomorf (Fundamentals of Biomorphology of Seed Plants, Vol. 2: Habitus and Growth Forms in Organization of Biomorphs), Moscow: Overlei, 2002.

  171. Page, C.N., An ecological survey of the ferns of the Canary Islands, Fern Gaz., 1977, vol. 11, no. 5, pp. 297–312.

    Google Scholar 

  172. Panfilov, D.V., Nasekomye v tropicheskikh lesakh Yuzhnogo Kitaya (Insects in the Tropical Forests of South China), Moscow: Mosk. Gos. Univ., 1961.

  173. Pankin, V.Kh., Karyological analysis of some representatives of epiphytic cacti (Cactaceae Juss.), Byull. Gl. Bot. Sada, 2005, vol. 189, pp. 136–150.

    Google Scholar 

  174. Patiño, J., González-Mancebo, J.M., Fernández-Palacios, J.M., Arévalo, J.R., and Bermúde, A., Short-term effects of clear-cutting on the biomass and richness of epiphytic bryophytes in managed subtropical cloud forests, Ann. For. Sci., 2009, vol. 66, no. 6, pp. 1–13.

    Article  Google Scholar 

  175. Pinkalski, C., Damgaard C., Jensen, K.V., Peng, R., and Offenberg, J., Quantification of ant manure deposition in a tropical agroecosystem: implications for host plant nitrogen acquisition, Ecosystems, 2015, vol. 18, pp. 1373–1382.

    Article  CAS  Google Scholar 

  176. Pittendrigh, C.S., The bromeliad–Anopheles–malaria complex in Trinidad. I—The bromeliad flora, Evolution, 1948, vol. 2, no. 1, pp. 58–89.

    CAS  PubMed  Google Scholar 

  177. Pocs, T., The role of the epiphytic vegetation in the water balance and humus production of the rain forests of the Uluguru Mountains, East. Africa, Boissiera, 1976, vol. 24, pp. 499–505.

    Google Scholar 

  178. Pos, E.T. and Sleegers, A.D.M., Distribuição vertical e ecologia de epífitas vasculares em uma floresta tropical do Brasil, Bol. Mus. Para. Emílio Goeldi Ciênc. Nat., 2010, vol. 5, no. 3, pp. 335–344.

    Article  Google Scholar 

  179. Putz, F.E. and Holbrook, N.M., Notes on the natural history of hemiepiphytes, Selbyana, 1986, vol. 9, pp. 61–69.

    Google Scholar 

  180. Qiu, S., Sultana, S., Liu, Z.D., Yin, L.Y., and Wang, C.Y., Identification of obligate C3 photosynthesis in Dendrobium, Photosynthetica, 2015, vol. 53, no. 2, pp. 168–176.

    Article  CAS  Google Scholar 

  181. Raunkiaer, C., The Life Form of Plants and Statistical Plant Geography, Oxford: Clarendon, 1934.

    Google Scholar 

  182. Raveh, E., Gersani, M., and Nobel, P.S., CO2 uptake and fluorescence responses for a shade-tolerant cactus Hylocereus undatus under current and doubled CO2 concentrations, Physiol. Plant., 1995, vol. 93, pp. 505–511.

    Article  CAS  Google Scholar 

  183. Rees, M., Condit, R., Crawley, M., Pacala, S., and Tilman, D., Long-term studies of vegetation dynamics, Science, 2001, vol. 293, no. 5530, pp. 650–655.

    Article  CAS  PubMed  Google Scholar 

  184. Reyes-Garcia, C., Mejia-Chang, M., Jones, G.D., and Griffiths, H., Water vapour isotopic exchange by epiphytic bromeliads in tropical dry forests reflects niche differentiation and climatic signals, Plant Cell Environ., 2008, vol. 31, pp. 828–841.

    Article  CAS  PubMed  Google Scholar 

  185. Richards, P.W., The Tropical Rain Forest: An Ecological Study, Cambridge: Cambridge Univ. Press, 1952.

    Google Scholar 

  186. Ritpitakphong, U., Falquet, L., Vimoltust, A., Berger, A., Metraux, J.P., and L’Haridon, F., The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen, New Phytol., 2016, vol. 210, pp. 1033–1043.

    Article  CAS  PubMed  Google Scholar 

  187. Roderick, M.L., Berry, S.L., and Noble, I.R., A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves, Funct. Ecol., 2000, vol. 14, no. 4, pp. 423–437.

    Article  Google Scholar 

  188. Rodina, O.A., Abakumov, E.V., Eskov, A.K., and Prilepskiy, N.G., Humic substances formation as a result of biogenic-abiogenic interactions in epiphytic structures of the South Vietnam tropical forest, in Processes and Phenomena on the Boundary Between Biogenic and Abiogenic Nature, Frank-Kamenetskaya, O., Vlasov, D., Panova, E., and Lessovaia, S., Eds., Cham: Springer-Verlag, 2020, pp. 417–434.

    Google Scholar 

  189. Rodrigues, M.A., Matiz, A., Cruz, A.B., Matsumura, A.T., Takahashi, C.A., et al., Spatial patterns of photosynthesis in thin-and thick-leaved epiphytic orchids: unravelling C3–CAM plasticity in an organ-compartmented way, Ann. Bot., 2013, vol. 112, no. 1, pp. 17–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Romero, G.Q., Nomura, F., Gonçalves, A.Z., Dias, N.Y.N., Mercier, H., et al., Nitrogen fluxes from treefrogs to tank epiphytic bromeliads: an isotopic and physiological approach, Oecologia, 2010, vol. 162, pp. 941–949.

    Article  PubMed  Google Scholar 

  191. Rosado, B.H., Almeida, L.C., Alves, L.F., Lambais, M.R., and Oliveira, R.S., The importance of phyllosphere on plant functional ecology: a phyllo trait manifesto, New Phytol., 2018, vol. 219, no. 4, pp. 1145–1149.

    Article  PubMed  Google Scholar 

  192. Rosenberger, T. and Williams, K., Responses of vascular epiphytes to branch-fall gap formation in Clusia trees in montane rainforest, Selbyana, 1999, vol. 20, pp. 49–58.

    Google Scholar 

  193. Rübel, E.A., The international phytogeographical excursion in the British Isles. V. The Killarney woods, New Phytol., 1912, vol. 11, no. 2, pp. 54−57.

    Article  Google Scholar 

  194. Rudolph, D., Rauer, G., Nieder, J., and Barthlott, W., Distributional patterns of epiphytes in the canopy and phorophyte characteristics in a western Andean rainforest in Ecuador, Selbyana, 1998, vol. 19, pp. 27–33.

    Google Scholar 

  195. Sage, R.F., Are crassulacean acid metabolism and C4 photosynthesis incompatible? Funct. Plant Biol., 2002, vol. 29, no. 6, pp. 775–785.

    Article  CAS  PubMed  Google Scholar 

  196. Sawinski, K., Mersmann, S., Robatzek, S., and Beohmer, M., Guarding the green: pathways to stomatal immunity, Mol. Plant Microbe Interact., 2013, vol. 26, pp. 626–632.

    Article  CAS  PubMed  Google Scholar 

  197. Schimper, A.F.W., Die Epiphytische Vegetation Amerikas, Jena: G. Fischer, 1888, no. 2.

  198. Schmit-Neuerburg, V., Dynamics of vascular epiphyte vegetation in the Venezuelan lowland rain forest of the Surumoni Crane Project, PhD Thesis, Bonn: Rheinische Friedrich-Wilhelm-Univ. Bonn, 2002.

  199. Schnitzer, M., Humic substances: chemistry and reactions, Dev. Soil Sci., 1978, vol. 8, pp. 1–64.

  200. Schreiber, L., Krimm, U., Knoll, D., Sayed, M., Auling, G., and Kroppenstedt, R.M., Plant–microbe interactions: identification of epiphytic bacteria and their ability to alter leaf surface permeability, New Phytol., 2005, vol. 166, pp. 589–594.

    Article  CAS  PubMed  Google Scholar 

  201. Schrimpff, E., Air pollution patterns in two cities of Colombia, SA according to trace substances content of an epiphyte (Tillandsia recurvata L.), Water, Air Soil Pollut., 1984, vol. 21, no. 1, pp. 279–315.

    Article  CAS  Google Scholar 

  202. Schulze, E.D., Kelliher, F.M., Körner, C., Lloyd, J., and Leuning, R., Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: a global ecology scaling exercise, Annu. Rev. Ecol. Syst., 1994, vol. 25, pp. 629–660.

    Article  Google Scholar 

  203. Serebryakov, I.G., Life forms of higher plants and their study, in Polevaya geobotanika (Field Geobotany), Leningrad: Nauka, 1964, vol. 3, pp. 146–205.

  204. Serebryakov, I.G. and Serebryakova, T.I., Two types of rhizome development in herbaceous perennials, Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 1965, vol. 70, no. 2, pp. 67–81.

    Google Scholar 

  205. Sergeeva, T.K., Kholopova, L.B., Nguen Tri T’en, and Nguen Shung Tu, Fauna and properties of “suspended soils” of tropical epiphyte Asplenium nidus L., Ekologiya, 1989, no. 5, pp. 29–40.

  206. Sergeeva, T.K., Kompantsev, A.V., Kompantseva, T.V., and Vtorova, V.N., Biota diversity of “suspended” soils in the tropical forests of Vietnam (by the example of a fern Asplenium nidus L.), in Troptsentr-98. Kniga 1. Biologicheskoe raznoobrazie i sovremennoe sostoyanie tropicheskikh ekosistem V’etnama (Tropcenter-98, Book 1: Biodiversity and Current State of Tropical Ecosystems in Vietnam), Moscow: Tropicheskii Tsentr, 1997, pp. 261–279.

  207. Shacklette, H.T. and Connor, J.J., Airborne Chemical Elements in Spanish Moss, Geol. Survey Prof. Pap., no. 574-E, Washington: US Gov. Print. Off., 1973.

  208. Shaw, P., The use of inert pads to study Collembola of suspended soils, Soil Org., 2013, vol. 85, no. 1, pp. 69–74.

    Google Scholar 

  209. Shaw, P., How high do Collembola climb? Studies of vertical migration in arboreal Collembola, Soil Org., 2015, vol. 87, no. 3, pp. 229–235.

    Google Scholar 

  210. Silvera, K. and Lasso, E., Ecophysiology and Crassulacean acid metabolism of tropical epiphytes, in Tropical Tree Physiology, Goldstein, G. and Santiago, L., Eds., Cham: Springer-Verlag, 2016, pp. 25–43.

    Google Scholar 

  211. Silvera, K., Santiago, L.S., and Winter, K., Distribution of crassulacean acid metabolism in orchids of Panama: evidence of selection for weak and strong modes, Funct. Plant Biol., 2005, vol. 32, pp. 397–407.

    Article  CAS  PubMed  Google Scholar 

  212. Silvera, K., Santiago, L.S., Cushman, J.C., and Winter, K., Crassulacean acid metabolism and epiphytism linked to adaptive radiations in the Orchidaceae, Plant Physiol., 2009, vol. 149, pp. 1838–1847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Silvera, K., Neubig, K.M., Whitten, W.M., Williams, N.H., Winter, K., and Cushman, J.C., Evolution along the crassulacean acid metabolism continuum, Funct. Plant Biol., 2010, vol. 37, pp. 995–1010.

    Article  CAS  Google Scholar 

  214. Sitte, P., Weiler, E.W., Kadereit, J.W., Bresinsky, A., and Körner, C., Lehrbuch der Botanik fur Hochschulen, Vol. 4: Ökologie, Heidelberg: Spektrum, 2002a.

    Google Scholar 

  215. Sitte, P., Weiler, E.W., Kadereit, J.W., Bresinsky, A., and Körner, C., Lehrbuch der Botanik fur Hochschulen, Vol. 2: Prinzipien der Pflanzenphysiologie, Heidelberg: Spektrum, 2002b.

    Google Scholar 

  216. Smirnova, E.S., Morfologiya pobegovykh sistem orkhidnykh (Morphology of Orchid Shoot Systems), Moscow: Nauka, 1990.

  217. Snäll, T., Ehrlén, J., and Rydin, H., Colonization–extinction dynamics of an epiphyte metapopulation in a dynamic landscape, Ecology, 2005, vol. 86, pp. 106–115.

    Article  Google Scholar 

  218. Song, L., Lu, H.-Z., Xu, X.-L., Li, S., Shi, X.-M., et al., Organic nitrogen uptake is a significant contributor to nitrogen economy of subtropical epiphytic bryophytes, Sci. Rep., 2016, vol. 6, art. ID 30408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Stäger, R., Beitrag zur schweizerischen ‘Epiphytenflora,’ Mitt. Naturforsch. Ges. Bern, 1908, vol. 1667, pp. 17–90.

    Google Scholar 

  220. Stein, A., Gerstner, K., and Kreft, H., Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales, Ecol. Lett., 2014, vol. 17, pp. 866–880.

    Article  PubMed  Google Scholar 

  221. Stewart, G.R., Schmidt, S., Handley, L.L., Turnbull, M.H., Erskine, P.D., and Joly, C.A., 15N natural abundance of vascular rainforest epiphytes: implications for nitrogen source and acquisition, Plant Cell Environ., 1995, vol. 18, no. 1, pp. 85–90.

    Article  Google Scholar 

  222. Stuntz, S. and Zotz, G., Photosynthesis in vascular epiphytes—a survey of 27 species of diverse taxonomic origin, Flora, 2001, vol. 196, pp. 132–141.

    Article  Google Scholar 

  223. Sugden, A.M., Aspects of the ecology of vascular epiphytes in the Colombian cloud forests. II. Habitat preferences of Bromeliaceae in the Serrania de Macuira, Selbyana, 1981, vol. 5, nos. 3–4, pp. 264–273.

    Google Scholar 

  224. Sugden, A.M. and Robins, R.J., Aspects of the ecology of vascular epiphytes in Colombian cloud forests. I. The distribution of the epiphytic flora, Biotropica, 1979, vol. 11, pp. 173–188.

    Article  Google Scholar 

  225. Tanaka, H.O., Inui, Y., and Itioka, T., Anti-herbivore effects of an ant species, Crematogaster difformis, inhabiting myrmecophytic epiphytes in the canopy of a tropical lowland rainforest in Borneo, Ecol. Res., 2009, vol. 24, no. 6, pp. 1393–1397.

  226. Tansley, H.G., The British Islands and Their Vegetation, Cambridge: Cambridge Univ. Press, 1939.

    Google Scholar 

  227. Tatarenko, I.V., Orkhidnye Rossii: zhiznennye formy, biologiya, voprosy okhrany (Orchids of Russia: Life Forms, Biology, and Conservation), Moscow: Argus, 1996.

  228. Taylor, A. and Burns, K., Radial distributions of air plants: a comparison between epiphytes and mistletoes, Ecology, 2016, vol. 97, no. 4, pp. 819–825.

    Article  PubMed  Google Scholar 

  229. Taylor, A., Zotz, G., Weigelt, P., Cai, L., Karger, D., and Kreft, H., Vascular epiphytes contribute disproportionately to global centers of plant diversity, Global Ecol. Biogeogr., 2022, vol. 31, no. 1, pp. 62–74. https://doi.org/10.1101/2021.05.21.445115

    Article  Google Scholar 

  230. Ter Steege, H. and Cornelissen, J.H.C., Distribution and ecology of vascular epiphytes in lowland rain forest of Guyana, Biotropica, 1989, vol. 21, pp. 331–339.

    Article  Google Scholar 

  231. Tiunov, A.V., Stable isotopes of carbon and nitrogen in soil ecological studies, Biol. Bull. (Moscow), 2007, vol. 34, no. 4, pp. 395–407.

    Article  CAS  Google Scholar 

  232. Tolchel’nikov, Yu.S., The essence of the concept of “soil,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., 1985, no. 3, pp. 52–58.

  233. Treseder, K.K., Davidson, D.W., and Ehleringer, J.R., Absorption of ant provided carbon dioxide and nitrogen by a tropical epiphyte, Nature, 1995, vol. 375, no. 6527, pp. 137–139.

    Article  CAS  Google Scholar 

  234. Trofymow, J.A. and Moore, T.R., Rates of litter decomposition after six years in Canadian forests: Influence of litter quality and climate, Can. J. For. Res., 2002, vol. 32, pp. 789–804.

    Article  Google Scholar 

  235. Tsen, E.W.J. and Holtum, J.A.M., Crassulacean acid metabolism (CAM) in an epiphytic ant-plant, Myrmecodia beccarii Hook.f. (Rubiaceae), Photosynth. Res., 2012, vol. 113, no. 1, pp. 311–320.

    Article  CAS  PubMed  Google Scholar 

  236. Turner, I.M., Tan, H.T.W., Wee, Y.C., Ibrahim, A.B., Chew, P.T., and Corlett, R.T., A study of plant species extinction in Singapore: lessons for the conservation of tropical biodiversity, Conserv. Biol., 1994, vol. 8, pp. 705–712.

    Article  Google Scholar 

  237. Umana, N.H.N. and Wanek, W., Large canopy exchange fluxes of inorganic and organic nitrogen and preferential retention of nitrogen by epiphytes in a tropical lowland rainforest, Ecosystems, 2010, vol. 13, no. 3, pp. 367–381.

    Article  CAS  Google Scholar 

  238. Vanderklift, M.A. and Ponsard, S., Sources of variation in consumer-diet δ15N enrichment: a meta-analysis, Oecologia, 2003, vol. 136, pp. 169–182.

    Article  PubMed  Google Scholar 

  239. Vargas, M.P.B. and van Andel, T., The use of hemiepiphytes as craft fibres by indigenous communities in the Colombian Amazon, Ethnobot. Res. Appl., 2005, vol. 3, pp. 243–260.

    Article  Google Scholar 

  240. Vergara-Torres, C.A., Pacheco-Álvarez, M.C., and Flores-Palacios, A., Host preference and host limitation of vascular epiphytes in a tropical dry forest of central Mexico, J. Trop. Ecol., 2010, vol. 26, pp. 563–570.

    Article  Google Scholar 

  241. Vinogradova, K.L., Epiphytism of algae: correction of terminology, Bot. Zh., 1989, vol. 74, no. 9, pp. 1291–1293.

    Google Scholar 

  242. Wagner, S., Bader, M.Y., and Zotz, G., Physiological ecology of tropical bryophytes, in Photosynthesis in Bryophytes and Early Land Plants, Hanson, D.T. and Rice, S.K., Eds., Dordrecht: Springer-Verlag, 2014, pp. 269–289.

  243. Walker, L.R., Zimmerman, J.K., Lodge, D.J., and Guzman-Grajales, S., An altitudinal comparison of growth and species composition in hurricane-damaged forests in Puerto Rico, J. Ecol., 1996, vol. 84, pp. 877– 889.

    Article  Google Scholar 

  244. Walter, H., Die Vegetation der Erde in Öko-Physiologischer Betrachtung, Vol. 1: Die Tropischen und Subtropischen Zonen, Stuttgart: G. Fischer Verlag, 1968.

    Google Scholar 

  245. Walter, H., Die Vegetation der Erde in Öko-Physiologischer Betrachtung, Vol. 2: Die Gemäßigten und Arktischen Zonen, Stuttgart: G. Fischer, 1973.

    Google Scholar 

  246. Wanek, W. and Zotz, G., Are vascular epiphytes nitrogen or phosphorus limited? A study of plant 15N fractionation and foliar N : P stoichiometry with the tank bromeliad Vriesea sanguinolenta, New Phytol., 2011, vol. 192, pp. 462–470.

    Article  CAS  PubMed  Google Scholar 

  247. Watkins, J.E., Jr., Cardelús, C.L., and Mack, M.C., Ants mediate nitrogen relations of an epiphytic fern, New Phytol., 2008, vol. 180, no. 1, pp. 5–8.

    Article  CAS  PubMed  Google Scholar 

  248. Watkins, J.E., Cardelús, C.L., Colwell, R.K., and Moran, R.C., Species richness and distribution of ferns along an elevational gradient in Costa Rica, Am. J. Bot., 2006, vol. 93, pp. 73–83.

    Article  Google Scholar 

  249. Werckmeister, P., Light induction of geotropism, and the control of proliferation and growthof Cymbidium in tissue culture, Bot. Gaz., 1971, vol. 132, no. 4, pp. 346–350.

    Article  Google Scholar 

  250. Werner, F.A., Reduced growth and survival of vascular epiphytes on isolated remnant trees in a recent tropical montane forest clear-cut, Basic Appl. Ecol., 2011, vol. 12, pp. 172–181.

    Article  Google Scholar 

  251. Williams-Linera, G. and Lawton, R.O., Ecology of hemiepiphytes in forest canopies, in Forest Canopies, Lowman, M.D. and Nadkarni, N.M., Eds., 1st ed., San Diego: Academic, 1995, pp. 255–283.

    Google Scholar 

  252. Wilmanns, O., Die Farnpflanzen Zentraleuropas, Heidelberg: Quelle and Meyer, 1968.

    Google Scholar 

  253. Winkler, M. and Hietz, P., Population structure of three epiphytic orchids (Lycaste aromatica, Jacquiniella leucomelana and J. teretifolia) in a Mexican humid montane forest, Selbyana, 2001, vol. 22, pp. 27–33.

    Google Scholar 

  254. Winkler, M., Hülber K., and Hietz, P., Population dynamics of epiphytic bromeliads: life strategies and the role of host branches, Basic Appl. Ecol., 2007, vol. 8, pp. 183–196.

    Article  Google Scholar 

  255. Winkler, M., Hülber, K., and Hietz, P., Population dynamics of epiphytic orchids in a metapopulation context, Ann. Bot., 2009, vol. 104, pp. 995–1004.

    Article  PubMed  PubMed Central  Google Scholar 

  256. Winter, K. and Holtum, J.A., Facultative crassulacean acid metabolism (CAM) in four small C3 and C4 leaf-succulents, Aust. J. Bot., 2017, vol. 65, no. 2, pp. 103–108.

    Article  CAS  Google Scholar 

  257. Winter, K., Wallace, B.J., Stocker, G.C., and Roksandic, Z., Crassulacean acid metabolism in Australian vascular epiphytes and some related species, Oecologia, 1983, vol. 57, no. 1, pp. 129–141.

    Article  PubMed  Google Scholar 

  258. Winter, K., Medina, E., Garcia, V., Mayoral, M.A., and Muniz, R., Crassulacean acid metabolism in roots of a leafless orchid Camplocentrum tyrridion Garay & Dunsterv, J. Plant Physiol., 1985, vol. 118, pp. 73–78.

    Article  CAS  PubMed  Google Scholar 

  259. Wolf, J.H.D. and Flamenco-S, A., Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico, J. Biogeogr., 2003, vol. 30, pp. 1689–1707.

    Article  Google Scholar 

  260. Yang, X., Warren, M., and Zou, X., Fertilization responses of soil litter fauna and litter quantity, quality, and turnover in low and high elevation forests of Puerto Rico, Appl. Soil Ecol., 2007, vol. 37, pp. 63–71.

    Article  CAS  Google Scholar 

  261. Zonn, S.V. and Li Chan-Kwei, Genesis and classification of tropical soils in China, Pochvovedenie, 1958, no. 6, pp. 58–69.

  262. Zotz, G., Demography of the epiphytic orchid, Dimerandra emarginata, J. Trop. Ecol., 1998, vol. 14, no. 6, pp. 725–741.

    Article  Google Scholar 

  263. Zotz, G., Gefässepiphyten in temperaten Wäldern, Bauhinia, 2002, vol. 16, pp. 13−22.

    Google Scholar 

  264. Zotz, G., How prevalent is crassulacean acid metabolism among vascular epiphytes? Oecologia, 2004, vol. 138, pp. 184–192.

    Article  PubMed  Google Scholar 

  265. Zotz, G., Vascular epiphytes in the temperate zones—a review, Plant Ecol., 2005, vol. 176, pp. 173–183.

    Article  Google Scholar 

  266. Zotz, G., The systematic distribution of vascular epiphytes—a critical update, Bot. J. Linn. Soc., 2013a, vol. 171, pp. 453–481.

    Article  Google Scholar 

  267. Zotz, G., ‘Hemiepiphyte’: a confusing term and its history, Ann. Bot., 2013b, vol. 111, no. 6, pp. 1015–1020.

    Article  PubMed  PubMed Central  Google Scholar 

  268. Zotz, G., Plants on Plants: The Biology of Vascular Epiphytes, Heidelberg: Springer-Verlag, 2016.

    Book  Google Scholar 

  269. Zotz, G. and Asshoff, R., Growth in epiphytic bromeliads: response to the relative supply of phosphorus and nitrogen, Plant Biol. (Stuttgart), 2010, vol. 12, pp. 108–113.

    Article  CAS  Google Scholar 

  270. Zotz, G. and List, C., Zufallsepiphyten—Pflanzen auf dem Weg nach oben? Bauhinia, 2003, vol. 17, pp. 25−37.

    Google Scholar 

  271. Zotz, G. and Richter, A., Changes in carbohydrate and nutrient contents throughout a reproductive cycle indicate that phosphorus is a limiting nutrient in the epiphytic bromeliad, Werauhia sanguinolenta, Ann. Bot., 2010, vol. 97, pp. 745–754.

    Article  CAS  Google Scholar 

  272. Zotz, G. and Thomas, V., How much water is in the tank? Model calculations for two epiphytic bromeliads, Ann. Bot., 1999, vol. 83, pp. 183–192.

    Article  Google Scholar 

  273. Zotz, G. and Vollrath, B., The epiphyte vegetation of the palm Socratea exorrhiza—correlations with tree size, tree age and bryophyte cover, J. Trop. Ecol., 2003, vol. 19, pp. 81–90.

    Article  Google Scholar 

  274. Zotz, G. and Ziegler, H., The occurrence of Crassulacean acid metabolism among vascular epiphytes from Central Panama, New Phytol., 1997, vol. 137, pp. 223–229.

    Article  CAS  PubMed  Google Scholar 

  275. Zotz, G., Hietz, P., and Schmidt, G., Small plants, large plants: the importance of plant size for the physiological ecology of vascular epiphytes, J. Exp. Bot., 2001, vol. 52, no. 363, pp. 2051–2056.

    Article  CAS  PubMed  Google Scholar 

  276. Zotz, G., Bogusch, W., Hietz, P., and Ketteler, N., Growth of epiphytic bromeliads in a changing world: the effect of elevated CO2 and varying water and nutrient supply, Acta Oecol., 2010, vol. 36, pp. 659–665.

    Article  Google Scholar 

  277. Zotz, G., Weigelt, P., Kessler, M., Kreft, H., and Taylor, A., EpiList 1.0: a global checklist of vascular epiphytes, Ecology, 2021a, vol. 102, no. 6, art. ID e03326.

    Article  PubMed  Google Scholar 

  278. Zotz, G., Almeda, F., Bautista-Bello, A.P., Eskov, A.K., Giraldo-Cañas, D., et al., Hemiepiphytes revisited, Perspect. Plant Ecol. Evol. Syst., 2021b, vol. 51, art. ID 125620. https://doi.org/10.1016/j.ppees.2021.125620

    Article  Google Scholar 

  279. Zytynska, S.E., Fay, M.F., Penney, D., and Preziosi, R.F., Genetic variation in a tropical tree species influences the associated epiphytic plant and invertebrate communities in a complex forest ecosystem, Philos. Trans. R. Soc., B, 2011, vol. 366, pp. 1329–1336.

Download references

Funding

The study was carried out with the financial support of the Russian Foundation for Basic Research, project no. 20-14-50223, and the Tzitzin Main Botanical Garden of the Russian Academy of Sciences, no. 118021490111-5, on the basis of the UNU Stock Greenhouse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Eskov.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Compliance with ethical standards. This article does not contain any research involving humans or animals as research objects.

Additional information

Translated by M. Shulskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskov, A.K., Kolomeitseva, G.L. Vascular Epiphytes: Plants That Have Broken Ties with the Ground. Biol Bull Rev 12, 304–333 (2022). https://doi.org/10.1134/S2079086422030033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086422030033

Navigation