Skip to main content
Log in

Species-Distribution Modeling: Advantages and Limitations of Its Application. 2. MaxEnt

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The MaxEnt software package is one of the most popular tools for species-distribution modeling. Despite its popularity, researchers usually underestimate the influence of the initial parameters and spatial bias in the occurrence data. The choice of the feature types and regularization multiplier notably affects the spatial “compactness” or “smoothness” of the model. A nonrandom distribution of occurrence points in geographical space requires data correction. The determination of the ecological factors that influence the range formation require the minimization of multicollinearity in the predictor dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Aiello-Lammens, M.E., Boria, R.A., Radosavljevic, A., Vilela, B., and Anderson, R.P., spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models, Ecography, 2015, vol. 38, no. 5, pp. 541–545.

    Article  Google Scholar 

  2. Anderson, R.P. and Gonzalez, I., Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent, Ecol. Modell., 2011, vol. 222, no. 15, pp. 2796–2811.

    Article  Google Scholar 

  3. Araújo, M.B., Pearson, R.G., Thuiller, W., and Erhard, M., Validation of species-climate impact models under climate change, Global Change Biol., 2005, vol. 11, no. 9, pp. 1504–1513.

    Article  Google Scholar 

  4. Araújo, M.B., Anderson, R.P., Barbosa, A.M., Beale, C.M., Dormann, C.F., et al., Standards for distribution models in biodiversity assessments, Sci. Adv., 2019, vol. 5, no. 1, p. eaat4858.

  5. Austin, M.P., Spatial prediction of species distribution: an interface between ecological theory and statistical modeling, Ecol. Modell., 2002, vol. 157, no. 2, pp. 101–118.

    Article  Google Scholar 

  6. Barbosa, A.M., fuzzySim: Applying fuzzy logic to binary similarity indices in ecology, Methods Ecol. Evol., 2015, vol. 6, no. 7, pp. 853–858.

    Article  Google Scholar 

  7. Bean, W.T., Stafford, R., and Brashares, J.S., The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models, Ecography, 2012, vol. 35, no. 3, pp. 250–258.

    Article  Google Scholar 

  8. Boria, R.A., Olson, L.E., Goodman, S.M., and Anderson, R.P., Spatial filtering to reduce sampling bias can improve the performance of ecological niche models, Ecol. Modell., 2014, vol. 275, pp. 73–77.

    Article  Google Scholar 

  9. Braunisch, V. and Suchant, R., Predicting species distributions based on incomplete survey data: the trade-off between precision and scale, Ecography, 2010, vol. 33, no. 5, pp. 826–840.

    Article  Google Scholar 

  10. Brown, J.L., SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses, Methods Ecol. Evol., 2014, vol. 5, no. 7, pp. 694–700.

    Article  Google Scholar 

  11. Cobos, M.E., Peterson, A.T., Barve, N., and Osorio-Olvera, L., kuenm: an R package for detailed development of ecological niche models using Maxent, PeerJ, 2019, vol. 7, p. e6281.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., et al., System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Modell. Dev., 2015, vol. 8, no. 7, pp. 1991–2007.

    Article  Google Scholar 

  13. Cord, A.F., Klein, D., Gernandt, D.S., de la Rosa, J.A.P., and Dech, S., Remote sensing data can improve predictions of species richness by stacked species distribution models: a case study for Mexican pines, J. Biogeogr., 2014, vol. 41, no. 4, pp. 736–748.

    Article  Google Scholar 

  14. Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., et al., Collinearity: a review of methods to deal with it and a simulation study evaluating their performance, Ecography, 2013, vol. 36, no. 1, pp. 27–46.

    Article  Google Scholar 

  15. Dubinin, M.Yu. and Kostikova, A.A., Introduction into GIS systems, Vector and raster data, 2008. http://gis-lab.info/docs/giscourse/11-vector-raster.html.

  16. El-Gabbas, A. and Dormann, C.F., Improved species-occurrence predictions in data-poor regions: using large-scale data and bias correction with down-weighted Poisson regression and Maxent, Ecography, 2018, vol. 41, no. 7, pp. 1161–1172.

    Article  Google Scholar 

  17. Elith, J., Kearney, M., and Phillips, S., The art of modeling range-shifting species, Methods Ecol. Evol., 2010, vol. 1, no. 4, pp. 330–342.

    Article  Google Scholar 

  18. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., and Yates, C.J., A statistical explanation of MaxEnt for ecologists, Diversity Distrib., 2011, vol. 17, no. 1, pp. 43–57.

    Article  Google Scholar 

  19. Fei, S. and Yu, F., Quality of presence data determines species distribution model performance: a novel index to evaluate data quality, Landscape Ecol., 2016, vol. 31, no. 1, pp. 31–42.

    Article  Google Scholar 

  20. Fourcade, Y., Engler, J.O., Rödder, D., and Secondi, J., Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias, PLoS One, 2014, vol. 9, no. 5, p. e97122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Fourcade, Y., Besnard, A.G., and Secondi, J., Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics, Global Ecol. Biogeogr., 2018, vol. 27, no. 2, pp. 245–256.

    Article  Google Scholar 

  22. Guillera-Arroita, G., Lahoz-Monfort, J.J., Elith, J., Gordon, A., Kujala, H., et al., Is my species distribution model fit for purpose? Matching data and models to applications: matching distribution models to applications, Global Ecol. Biogeogr., 2015, vol. 24, no. 3, pp. 276–292.

    Article  Google Scholar 

  23. Hijmans, R.J., Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model, Ecology, 2012, vol. 93, no. 3, pp. 679–688.

    Article  PubMed  Google Scholar 

  24. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A., Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 2005, vol. 25, no. 15, pp. 1965–1978.

    Article  Google Scholar 

  25. Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schröder, B., Lindenborn, J., et al., The importance of correcting for sampling bias in MaxEnt species distribution models, Diversity Distrib., 2013, vol. 19, no. 11, pp. 1366–1379.

    Article  Google Scholar 

  26. Krenke, A.N. and Puzachenko, Yu.G., Compilation of the map of landscape cover based on remote data, Ekol. Plan. Upr., 2008, vol. 2, no. 7, pp. 10–25.

    Google Scholar 

  27. Lissovsky, A.A., Dudov, S.V., and Obolenskaya, E.V., Species-distribution modeling: advantages and limitations of its application. 1. General approaches, Biol. Bull. Rev., 2021, vol. 11, no. 3, pp. 254–264.

  28. Liu, C., White, M., and Newell, G., Selecting thresholds for the prediction of species occurrence with presence-only data, J. Biogeogr., 2013, vol. 40, no. 4, pp. 778–789.

    Article  Google Scholar 

  29. Merow, C., Smith, M.J., and Silander, J.A., A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter, Ecography, 2013, vol. 36, no. 10, pp. 1058–1069.

    Article  Google Scholar 

  30. Morales, N.S., Fernández, I.C., and Baca-González, V., MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review, PeerJ, 2017, vol. 5, p. e3093.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Muscarella, R., Galante, P.J., Soley-Guardia, M., Boria, R.A., Kass, J.M., et al., ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models, Methods Ecol. Evol., 2014, vol. 5, no. 11, pp. 1198–1205.

    Article  Google Scholar 

  32. Naimi, B. and Araújo, M.B., sdm: A reproducible and extensible R platform for species distribution modeling, Ecography, 2016, vol. 39, no. 4, pp. 368–375.

    Article  Google Scholar 

  33. Neteler, M., Bowman, M.H., Landa, M., and Metz, M., GRASS GIS: a multi-purpose open source GIS, Environ. Modell. Software, 2012, vol. 31, pp. 124–130.

    Article  Google Scholar 

  34. Nuñez, M.A. and Medley, K.A., Pine invasions: climate predicts invasion success; something else predicts failure, Diversity Distrib., 2011, vol. 17, no. 4, pp. 703–713.

    Article  Google Scholar 

  35. Pearson, R.G., Raxworthy, C.J., Nakamura, M., and Townsend Peterson, A., Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar, J. Biogeogr., 2007, vol. 34, no. 1, pp. 102–117.

    Article  Google Scholar 

  36. Phillips, S.J. and Dudík, M., Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation, Ecography, 2008, vol. 31, no. 2, pp. 161–175.

    Article  Google Scholar 

  37. Phillips, S.J., Dudík, M., and Schapire, R.E., A maximum entropy approach to species distribution modeling, Proc. 21st Int. Conf. on Machine Learning, July 4–8, 2004, Banff, 2004, pp. 655–662.

  38. Phillips, S.J., Anderson, R.P., and Schapire, R.E., Maximum entropy modeling of species geographic distributions, Ecol. Modell., 2006, vol. 190, nos. 3–4, pp. 231–259.

    Article  Google Scholar 

  39. Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., et al., Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data, Ecol. Appl., 2009, vol. 19, no. 1, pp. 181–197.

    Article  PubMed  Google Scholar 

  40. Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E., and Blair, M.E., Opening the black box: an open-source release of Maxent, Ecography, 2017, vol. 40, no. 7, pp. 887–893.

    Article  Google Scholar 

  41. Phillips, S.J., Dudík, M., and Schapire, R.E., Maxent software for modeling species niches and distributions, Version 3.4.1, 2019. http://biodiversityinformatics.amnh.org/open_source/maxent.

  42. Radosavljevic, A. and Anderson, R.P., Making better Maxent models of species distributions: complexity, overfitting and evaluation, J. Biogeogr., 2014, vol. 41, no. 4, pp. 629–643.

    Article  Google Scholar 

  43. Rangel, T.F.L.V.B., Diniz-Filho, J.A.F., and Bini, L.M., Towards an integrated computational tool for spatial analysis in macroecology and biogeography, Global Ecol. Biogeogr., 2006, vol. 15, no. 4, pp. 321–327.

    Article  Google Scholar 

  44. Renner, I.W. and Warton, D.I., Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology, Biometrics, 2013, vol. 69, no. 1, pp. 274–281.

    Article  PubMed  Google Scholar 

  45. Shcheglovitova, M. and Anderson, R.P., Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes, Ecol. Model., 2013, vol. 269, pp. 9–17.

    Article  Google Scholar 

  46. Syfert, M.M., Smith, M.J., and Coomes, D.A., The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models, PLoS One, 2013, vol. 8, no. 2, p. e55158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thuiller, W., Georges, D., Engler, R., and Breiner, F., biomod2: Ensemble platform for species distribution modeling, R package version 3.3-7.1, 2019. https://cran.r-project.org/web/packages/biomod2.

  48. Velazco, S.J.E., Galvão, F., Villalobos, F., and de Marco, P., Using worldwide edaphic data to model plant species niches: an assessment at a continental extent, PLoS One, 2017, vol. 12, no. 10, pp. 1–24.

    Article  CAS  Google Scholar 

  49. Ward, G., Hastie, T., Barry, S., Elith, J., and Leathwick, J.R., Presence-only data and the EM algorithm, Biometrics, 2009, vol. 65, no. 2, pp. 554–563.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Warren, D.L. and Seifert, S.N., Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria, Ecol. Appl., 2011, vol. 21, no. 2, pp. 335–342.

    Article  PubMed  Google Scholar 

  51. Warren, D.L., Glor, R.E., and Turelli, M., ENMTools: a toolbox for comparative studies of environmental niche models, Ecography, 2010, vol. 33, no. 3, pp. 607–611.

    Google Scholar 

  52. Warren, D.L., Wright, A.N., Seifert, S.N., and Shaffer, H.B., Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern, Diversity Distrib., 2014, vol. 20, no. 3, pp. 334–343.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to two anonymous reviewers for their detailed work on the text of the manuscript and valuable comments.

Funding

The work was financial supported by the Russian Science Foundation, project no. 18-14-00093.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Lissovsky or S. V. Dudov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by T. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lissovsky, A.A., Dudov, S.V. Species-Distribution Modeling: Advantages and Limitations of Its Application. 2. MaxEnt. Biol Bull Rev 11, 265–275 (2021). https://doi.org/10.1134/S2079086421030087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086421030087

Navigation