Skip to main content
Log in

Which Plant Strategies Are Related to Dominanсе in Alpine Communities?

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The numerical estimation of ecological strategies (according to the classification of J. Grime) can contribute to plant dominance iunder certain environmental conditions. Alpine plants are traditionally considered as stress-tolerators (S) that are adapted to low temperatures and poor soils. We assessed the hypothesis that the C strategy is more expressed in relatively productive alpine meadows, whereas the R strategy is more important in communities with a short growing season and a heavy snow cover. The structure of the aboveground biomass (ratio between the species) and the parameters of leaves of all species of vascular plants were studied in four communities (alpine lichen heath, ALH; Festuca varia grassland, FVG; GeraniumHedysarum meadow, GHM, and snowbed community, SBC). Based on these values, the contribution of the C, S, R components to the overall strategy of each species (according to S. Peirce et al.) and the weighted mean values ​​of the contribution of strategies for each community were calculated. The a priori hypothesis was confirmed, while the dominant species showed an increase in the role of stress tolerance on ALH and FVG and competitiveness on GHMs, which indicates the adaptability of these strategies in the studied communities. The contribution of C and S is in good agreement with the role of competition in the formation of various communities: it is maximal for GHMs, in which the C strategy is expressed, and minimal for FVGs, in which stress tolerance is most pronounced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alpine Ecosystems in the Northwest Caucasus, Onipchenko, V.G., Ed., Dordrecht: Kluwer, 2004.

    Google Scholar 

  2. Boulangeat, I., Lavergne, S., van Es, J., Garraud, L., and Thuiller, W., Niche breath, rarity and ecological characteristics within a regional flora spanning large environmental gradients, J. Biogeogr., 2012, vol. 39, no. 1, pp. 204–214.

    Article  Google Scholar 

  3. Caccianiga, M., Luzzaro, A., Pierce, S., Ceriani, R.M., and Cerabolini, B., The functional basis of a primary succession resolved by CSR classification, Oikos., 2006, vol. 112, no. 1, pp. 10–20.

    Article  Google Scholar 

  4. Cerabolini, B.E.L., Brusa, G., Ceriani, R.M., et al., Can CSR classification be generally applied outside Britain? Plant Ecol., 2010a, vol. 210, no. 2, pp. 253–261.

    Article  Google Scholar 

  5. Cerabolini, B., Pierce, S., Luzzaro, A., and Ossola, A., Species evenness affects ecosystem processes in situ via diversity in the adaptive strategies of dominant species, Plant Ecol., 2010b, vol. 207, no. 2, pp. 333–345.

    Article  Google Scholar 

  6. Chalmandrier, L., Munkemuller, T., Colace, M.-P., Renaud, J., Aubert, S., et al., Spatial scale and intraspecific trait variability mediate assembly rules in alpine grasslands, J. Ecol., 2017, vol. 105, no. 1, pp. 277–287.

    Article  Google Scholar 

  7. Cornelissen, J.H.C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., et al., A handbook of protocols for standardised and easy measurements of plant functional traits worldwide, Aust. J. Bot., 2003, vol. 51, no. 4, pp. 335–380.

    Article  Google Scholar 

  8. Dudova, K.V., Ataballyev, G.G., Akhmetzhanova, A.A., Gulov, D.M., Dudov, S.V., et al., Functional diversity of alpine plant communities: a case study of plant height, Biol. Bull. Rev., 2020, vol. 10, no. 5, pp. 464–474.

    Article  Google Scholar 

  9. Elumeeva, T.G., Onipchenko, V.G., Cornelissen, J.H.C., Semenova, G.V., Perevedentseva, L.G., et al., Is intensity of plant root mycorrhizal colonization a good proxy for plant growth rate, dominance and decomposition in nutrient poor conditions? J. Veg. Sci., 2018, vol. 29, no. 4, pp. 715–725.

    Article  Google Scholar 

  10. Fomin, S.V., Onipchenko, V.G., and Sennov, A.V., Feeding and burrowing activities of (Pitymys majori Thos.) in the alpine communities of the Northwest Caucasus, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1989, vol. 94, no. 3, pp. 6–13.

    Google Scholar 

  11. Garnier, E., Navas, M.-L., and Grigulis, K., Plant Functional Diversity, Oxford: Oxford Univ. Press, 2016.

    Google Scholar 

  12. Goldberg, D.E., Influence of competition at the community level: an experimental version of the null models approach, Ecology, 1994, vol. 75, no. 5, pp. 1503–1506.

    Article  Google Scholar 

  13. Grime, J.P., Vegetation classification by reference to strategies, Nature, 1974, vol. 250, pp. 26–31.

    Article  Google Scholar 

  14. Grime, J.P., Plant Strategies and Vegetation Processes, Chichester: Wiley, 1979.

    Google Scholar 

  15. Grime, J.P., Plant Strategies, Vegetation Processes, and Ecosystem Properties, Chichester: Wiley, 2001, 2nd ed.

    Google Scholar 

  16. Grime, J.P. and Pierce, S., The Evolutionary Strategies That Shape Ecosystems, Chichester: Wiley, 2012.

    Book  Google Scholar 

  17. Grime, J.P., Hodgson, J.G., and Hunt, R., Comparative Plant Ecology: A Functional Approach to Common British Species, London: Unwin Hyman, 1988.

    Book  Google Scholar 

  18. Huseyinoglu, R. and Yalcin, E., Competitive, stress-tolerant and ruderal based classification of some plant species in an Alpine community of the Giresun Mountains in Turkey, J. Environ. Biol., 2017, vol. 38, no. 5, pp. 761–769.

    Article  Google Scholar 

  19. Komac, B., Pladevall, C., Penuelas, J., Conesa, J.V., and Domenech, M., Variations in functional diversity in snowbed plant communities determining snowbed continuity, Plant Ecol., 2015, vol. 216, no. 9, pp. 1257–1274.

    Article  Google Scholar 

  20. Liu, Y., Fan, J., Harris, W., Shao, Q., Zhou, Y., et al., Effects of plateau pika (Ochotona curzoniae) on net ecosystem carbon exchange of grassland in the Three Rivers Headwaters region, Qinghai-Tibet, China, Plant Soil, 2013, vol. 366, nos. 1–2, pp. 491–504.

    Article  CAS  Google Scholar 

  21. Mark, A.F., Korsten, A.C., Guevara, D.U., Dickinson, K.J.M., Humar-Maegli, T., et al., Ecological responses to 52 years of experimental snow manipulation in high-alpine cushionfield, Old Man Range, south-central New Zealand, Arct. Antarct. Alp. Res., 2015, vol. 47, no. 4, pp. 751–772.

    Article  Google Scholar 

  22. Mason, N.W.H., Mouillot, D., Lee, W.G., and Wilson, J.B., Functional richness, functional evenness and functional divergence: the primary components of functional diversity, Oikos, 2005, vol. 111, no. 1, pp. 112–118.

    Article  Google Scholar 

  23. irkin, B.M. and Naumova, L.G., Nauka o rastitel’nosti (Vegetation Science), Ufa: Gilem, 1998

  24. Onipchenko, V.G., Phytomass of the alpine communities of the Northwest Caucasus, Byull. Mosk. O-va Ispyt. Prir., Otd. Biol., 1990, vol. 95, no. 6, pp. 52–62.

    Google Scholar 

  25. Onipchenko, V.G., Alpine Vegetation of the Teberda Reserve, the Northwest Caucasus, Zurich: Stiftung Rubel, 2002.

    Google Scholar 

  26. Onipchenko, V.G., Semenova, G.V., and van der Maarel, E., Population strategies in severe environments: Alpine plants in the northwestern Caucasus, J. Veg. Sci., 1998, vol. 9, no. 1, pp. 27–40.

    Article  Google Scholar 

  27. Onipchenko, V.G., Blinnikov, M.S., Gerasimova, M.A., Volkova, E.V., and Cornelissen, J.H.C., Experimental comparison of competition and facilitation in alpine communities varying in productivity, J. Veg. Sci., 2009, vol. 20, no. 4, pp. 718–727.

    Article  Google Scholar 

  28. Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., et al., New handbook for standardized measurement of plant functional traits worldwide, Austr. J. Bot., 2013, vol. 61, no. 3, pp. 167–234.

    Article  Google Scholar 

  29. Pierce, S., Brusa, G., Vagge, I., and Cerabolini, B.E.L., Allocating CSR plant functional types: The use of leaf economics and size traits to classify woody and herbaceous vascular plants, Funct. Ecol., 2013, vol. 27, no. 4, pp. 1002–1010.

    Article  Google Scholar 

  30. Pierce, S., Ceriani, R.M., de Andreis, R., Luzzaro, A., and Cerabolini, B., The leaf economics spectrum of Poaceae reflects variation in survival strategies, Plant Biosyst., 2007a, vol. 141, no. 3, pp. 337–343.

    Article  Google Scholar 

  31. Pierce, S., Luzzaro, A., Caccianiga, M., Ceriani, R.M., and Cerabolini, B., Disturbance is the principal a-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community, J. Ecol., 2007b, vol. 95, no. 4, pp. 698–706.

    Article  Google Scholar 

  32. Pierce, S., Bottinelli, A., Bassani, I., Ceriani, M.R., and Cerabolini, B.E.L., How well do seed production traits correlate with leaf traits, whole-plant traits and plant ecological strategies? Plant Ecol., 2014, vol. 380, no. 11, pp. 1351–1359.

    Article  Google Scholar 

  33. Pierce, S., Negreiros, D., Cerabolini, B.E., Kattge, J., Díaz, S., et al., A global method for calculating plant CSR ecological strategies applied across biomes world-wide, Funct. Ecol., 2017, vol. 31, no. 2, pp. 444–457.

    Article  Google Scholar 

  34. Rabotnov, T.A., Analysis of cenotic populations to clarify the “life strategy” of plant species, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1975, vol. 80, no. 2, pp. 5–17.

    Google Scholar 

  35. Ramenskii, L.G., The fundamental principles, basic concepts, and terms of industrial typology of lands, geobotany, and ecology, Sov. Bot., 1935, vol. 4, pp. 25–40.

    Google Scholar 

  36. Ramenskii, L.G., Vvedenie v kompleksnoe pochvenno-geobotanicheskoe izuchenie zemel’ (Introduction into Soil-Geobotanical Study of Lands), Moscow: Sel’khozgiz, 1938.

  37. Reader, R.J., Relationship between species relative abundance and plant traits for an infertile habitat, Plant Ecol., 1998, vol. 134, no. 1, pp. 43–51.

    Article  Google Scholar 

  38. Richardson, S.J., Willams, P.A., Mason, N.W.H., Buxton, R.P., Courtney, S.P., et al., Rare species drive local trait diversity in two geographically disjunct examples of a naturally rare alpine ecosystem in New Zealand, J. Veg. Sci., 2012, vol. 23, no. 4, pp. 626–639.

    Article  Google Scholar 

  39. Romanovskii, Yu.E., The current concept of life cycle strategy, Biol. Nauki, 1989a, no. 11, pp. 18–31.

  40. Romanovskii, Yu.E., Competition for a fluctuating resource: evolutionary and environmental consequences, Zh. Obshch. Biol., 1989b, vol. 50, no. 3, pp. 304–315.

    Google Scholar 

  41. Romanovskii, Yu.E., Life cycle strategies: a synthesis of empirical and theoretical approaches, Zh. Obshch. Biol., 1998, vol. 59, no. 6, pp. 565–585.

    PubMed  Google Scholar 

  42. Schleuter, A.D., Daufresne, M., Massol, F., and Argillier, C., A user’s guide to functional diversity indices, Ecol. Monogr., 2010, vol. 80, no. 3, pp. 469–484.

    Article  Google Scholar 

  43. Sherrod, S.K. and Seastedt, T.R., Effects of the northern pocket gopher (Thomomys talpoides) on alpine soil characteristics, Niwot Ridge, CO, Biogeochemistry, 2001, vol. 55, no. 2, pp. 195–218.

    Article  CAS  Google Scholar 

  44. Shidakov, I.I. and Onipchenko, V.G., Comparison of the parameters of the leaf apparatus of plants in the alpine belt of the Teberda Nature Reserve, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 2007, vol. 112, no. 4, pp. 42–50.

    Google Scholar 

  45. Wang, J., Zhang, C., Yang, H., Mou, C., Mo, L., and Luo, P., Plant community ecological strategy assembly response to yak grazing in an alpine meadow on the eastern Tibetan Plateau, Land Degrad. Dev., 2018, vol. 29, no. 9, pp. 2920–2931.

    Article  Google Scholar 

  46. Zakharov, A.A., Gerasimova, M.A., and Onipchenko, V.G., Dependence of the distribution of plants in alpine covers on the thickness of the snow cover, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 2002, vol. 107, no. 5, pp. 80–83.

    Google Scholar 

  47. Zenyakin, S.A. and Onipchenko, V.G., Assessment of the scale of burrowing activities of the Caucasian mole (Talpa caucasica Satunin) on alpine meadow of the Teberda Nature Reserve, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1997, vol. 102, no. 3, pp. 52–53.

    Google Scholar 

  48. Zernov, A.S., Alekseev, Yu.E., and Onipchenko, V.G., Opredelitel’ sosudistykh rastenii Karachaevo-Cherkesskoi Respubliki (Guide for Identification of Vascular Plants of the Karachay-Cherkess Republic), Moscow: KMK, 2015.

Download references

Funding

The study was carried out according to the project of the Russian Science Foundation (no. 19-14-00038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Dudova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by M. Shulskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onipchenko, V.G., Dudova, K.V., Akhmetzhanova, A.A. et al. Which Plant Strategies Are Related to Dominanсе in Alpine Communities?. Biol Bull Rev 11, 76–85 (2021). https://doi.org/10.1134/S2079086421010035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086421010035

Navigation