Skip to main content
Log in

Identification of the Type of Population Dynamics of the Green Oak Tortrix with a Generalized Discrete Logistic Model

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract—This paper deals with the identification of the type of population dynamics of the green oak tortrix (Tortrix viridana L.) by the available time series with a generalized discrete logistic model. The results of estimates of model parameters obtained by the ordinary least squares (OLS) method and model parameters obtained by the method of extreme points (MEP) are compared. It is assumed that the model adequately describes the population dynamics if and only if the deviations of the theoretical (model) data from the empirical data meet a number of statistical tests. It is shown that the model using OLS estimates does not provide adequate fitting of time series and the type of population dynamics cannot be identified. Analysis of four variants of MEP estimates shows that the observed regime of the population dynamics is not cyclic (if the length of the cycle is less than 15 000 years); in addition, a rapid decrease in the values of the autocorrelation function, followed by their fluctuation in a narrow range, is observed for all regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bard, Y., Nonlinear Parameter Estimation, New York: Academic, 1974.

    Google Scholar 

  2. Bol’shev, L.N. and Smirnov, N.V., Tablitsy matematicheskoy statistiki (Tables of Mathematical Statistics), Moscow: Nauka, 1983.

    Google Scholar 

  3. Draper, N.R. and Smith, H., Applied Regression Analysis, New York: Wiley, 1967, 2nd ed.

    Google Scholar 

  4. Hettmansperger, T.P., Statistical Inference Based on Ranks, Wiley Series in Probability and Statistics, New York: Wiley, 1984.

    Google Scholar 

  5. Isaev, A.S., Khlebopros, R.G., Nedorezov, L.V., Kiselev, V.V., and Kondakov, Yu.P., Dinamika chislennosti lesnykh nasekomykh (Population Dynamics of Forest Insects), Novosibirsk: Nauka, 1984.

    Google Scholar 

  6. Isaev, A.S., Khlebopros, R.G., Nedorezov, L.V., Kiselev, V.V., Kondakov, Yu.P., and Sukhovol’skii, V.G., Populyatsionnaya dinamika lesnykh nasekomykh (Population Dynamics of Forest Insects), Moscow: Nauka, 2001.

    Google Scholar 

  7. Korzukhin, M.D. and Semevskii, F.N., Sinekologiya lesa (Forest Synecology), St. Petersburg: Gidrometeoizdat, 1992.

    Google Scholar 

  8. Kostitzin, V.A., Biologie Mathématique, Paris: A. Colin, 1937.

  9. Lakin, G.F., Biometriya (Biometry), Moscow: Vysshaya Shkola, 1990.

    Google Scholar 

  10. Likes, J. and Laga, J., Základní Statistické Tabulky, Praha: SNTL, 1978.

  11. Lilliefors, H.W., On the Kolmogorov–Smirnov test for normality with mean and variance unknown, J. Am. Stat. Assoc., 1967, vol. 64, pp. 399–402.

    Article  Google Scholar 

  12. Lyapunov, A.A. and Bagrinovskaya, G.I., Methodology of mathematical biology, in Matematicheskoe modelirovanie v biologii (Mathematical Modeling in Biology), Moscow: Nauka, 1975, pp. 5–18.

    Google Scholar 

  13. Maynard Smith, J., Mathematical Ideas in Biology, New York: Cambridge Univ. Press, 1968.

    Book  Google Scholar 

  14. Maynard Smith, J., Models in Ecology, New York: Cambridge Univ. Press, 1974.

    Google Scholar 

  15. McCallum, H., Population Parameters: Estimation for Ecological Models, Brisbane: Blackwell, 2000.

    Google Scholar 

  16. Nedorezov, L.V., Khaos i poryadok v populyatsionnoi dinamike: modelirovanie, analiz, prognoz (Chaos and Order in Population Dynamics: Modeling, Analysis, and Forecast), Saarbrucken: LAP Lambert Academic, 2012a.

    Google Scholar 

  17. Nedorezov, L.V., Analysis of Gauze experimental time series by means of continuous-time models, Biol. Bull. Rev., 2012b, vol. 2, no. 5, pp. 413–420.

    Article  Google Scholar 

  18. Nedorezov, L.V., Basic properties of ELP-model, Popul. Dyn.: Anal., Model., Forecast, 2014, vol. 3, no. 4, pp. 93–101.

    Google Scholar 

  19. Nedorezov, L.V., Method of extreme points: characteristics of feasible sets for forecast of population dynamics, Comput. Ecol. Software, 2015, vol. 5, no. 4, pp. 389–401.

    Google Scholar 

  20. Nedorezov, L.V., The dynamics of the lynx–hare system: an application of the Lotka–Volterra model, Biophysics (Moscow), 2016, vol. 61, no. 1, pp. 149–154.

  21. Nedorezov, L.V. and Utyupin, Yu.V., Nepreryvno-diskretnye modeli dinamike chislennosti populyatsii. Analiticheskii obzor (Continuous Discrete Models in Dynamics of Population Size: Analytical Review), Novosibirsk: Gos. Publ. Nauchno-Tekh. Bibl., Rib. Otd., Ross. Akad. Nauk, 2011, no. 95.

  22. Nedorezov, L.V., Sadykov, A.M., and Sadykova, D.L., Dynamics of a green oak moth population: application of discrete-continuous models with a nonmonotone density-dependent birth rate, Zh. Obshch. Biol., 2010, vol. 71, no. 1, pp. 41–51.

    CAS  PubMed  Google Scholar 

  23. Pielou, E.C., Mathematical Ecology, New York: Wiley, 1977.

    Google Scholar 

  24. Rubtsov, V.V., Modeli kolebatel’nykh protsessov v lesnykh ekosistemakh (Models of Oscillatory Processes in Forest Ecosystems), Moscow: Inst. Lesoved., 1992.

    Google Scholar 

  25. Rubtsov, V.V. and Rubtsova, N.N., Analiz vzaimodeistviya listogryzushchikh nasekomykh s dubom (Analysis of Interaction of Leaf-Eating Insects and Oak), Moscow: Nauka, 1984.

    Google Scholar 

  26. Shapiro, S.S., Wilk, M.B., and Chen, H.J., A comparative study of various tests of normality, J. Am. Stat. Assoc., 1968, vol. 63, pp. 1343–1372.

    Article  Google Scholar 

  27. Svirezhev, Yu.M., Nelineinye volny, dissipativnye struktury i katastrofy v ekologii (Nonlinear Waves, Dissipative Structures, and Catastrophes in Ecology), Moscow: Nauka, 1987.

    Google Scholar 

  28. Svirezhev, Yu.M. and Logofet, D.O., Ustoichivost’ biologicheskikh soobshchestv (Stability of Biological Communities), Moscow: Nauka, 1978.

    Google Scholar 

  29. Tonnang, H.E.Z, Nedorezov, L.V., Ochanda, H., Owino, J.O., and Löhr, B., Assessing the impact of biological control of Plutella xylostella through the application of Lotka–Volterra model, Ecol. Model., 2009a, vol. 220, pp. 60–70.

    Article  Google Scholar 

  30. Tonnang, H.E.Z., Nedorezov, L.V., Owino, J.O., Ochanda, H., and Löhr, B., Evaluation of discrete host–parasitoid models for diamondback moth and Diadegma semiclausum field time population density series, Ecol. Model., 2009b, vol. 220, pp. 1735–1744.

    Article  Google Scholar 

  31. Tonnang, H., Nedorezov, L.V., Owino, J., Ochanda, H., and Löhr, B., Host–parasitoid population density prediction using artificial neural networks: diamondback moth and its natural enemies, Agric. For. Entomol., 2010, vol. 12, no. 3, pp. 233–242.

    Google Scholar 

  32. Wood, S.N., Minimizing model fitting objectives that contain spurious local minima by bootstrap restarting, Biometrics, 2001a, vol. 57, pp. 240–244.

    Article  CAS  PubMed  Google Scholar 

  33. Wood, S.N., Partially specified ecological models, Ecol. Monogr., 2001b, vol. 71, pp. 1–25.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Nedorezov.

Additional information

Translated by D. Zabolotny

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedorezov, L.V. Identification of the Type of Population Dynamics of the Green Oak Tortrix with a Generalized Discrete Logistic Model. Biol Bull Rev 9, 243–249 (2019). https://doi.org/10.1134/S2079086419030071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086419030071

Navigation