Skip to main content
Log in

Wolbachia Bacteria and Filarial Nematodes: Mutual Benefit and the Parasite’s Achilles’ Heel

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The current information on symbiotic interrelations of the intracellular bacterium Wolbachia and filariae (parasites of human and animals), as well as evidence of the joint evolution of the symbiont and hosts, are discussed. Data on the absence of the joint distribution of this bacterium with its host in some Wolbachia supergroups are also presented. The results of morphological, genome, and transcriptomiс analyses obtained in the last ten years are provided. Insight into the biology and evolution of Wolbachia endosymbionts in the filarial organism, which were obtained by cytological, biochemical, and molecular methods, makes it possible to use the bacterium, which is obligate for filariae, in the treatment of human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Asplen, M.K., Bano, N., Brady, C.M., et al., Specialization of bacterial endosymbionts that protect aphids from parasitoids, Ecol. Entomol., 2014, vol. 39, pp. 736–739.

    Article  Google Scholar 

  2. Bain, O., Casiraghi, M., Martin, C., and Uni, S., The nematode Filarioidea: critical analysis linking molecular and traditional approaches, Parasite, 2008, vol. 15, pp. 342–348.

    Article  CAS  PubMed  Google Scholar 

  3. Bandi, C., Anderson, T.J.C., Genchi, C., and Blaxter, M.L., Phylogeny of W. pipientis in filarial nematodes, Proc. R. Soc. Lond. B, 1998, vol. 265, pp. 2407–2413.

    Article  CAS  Google Scholar 

  4. Bennuru, S., Meng, Z., Ribeiro, J.M., et al., Stage-specific proteomic expression patterns of the human filarial parasite Brugia malayi and its endosymbiont Wolbachia, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, no. 23, pp. 9649–9654. doi 10.1073/pnas.1011481108

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bocková, E., Rudolf, I., Kočišová, A., et al., Dirofilaria repens microfilariae in Aedes vexans mosquitoes in Slovakia, Parasitol. Res., 2013, vol. 112, no. 10, pp. 3465–3470. doi 10.1007/s00436-013-3526-9

  6. Bogacheva, A.S., Shaikevich, E.V., Rakova, V.M., and Ganushkina, L.A., The fauna of blood-sucking mosquitoes of the Nizhny Novgorod oblast, their infection with dyrophilia and endosymbiotic bacteria, Med. Parazitol., 2017, no. 1, pp. 43–47.

  7. Bordenstein, S., Fitch, D., and Werren, J., Absence of Wolbachia in nonfilariid nematodes, J. Nematol., 2003, vol. 35, pp. 266–270.

    PubMed  PubMed Central  Google Scholar 

  8. Boussinesq, M., Kamgno, J., Pion, S.D., and Gardon, J., What are the mechanisms associated with post-ivermectin serious adverse events? Trends Parasitol., 2006, vol. 22, pp. 244–246.

    Article  CAS  PubMed  Google Scholar 

  9. Brown, A.M.V., Wasala, S.K., Howe, D.K., et al., Genomic evidence for plant-parasitic nematodes as the earliest Wolbachia hosts, Sci. Rep., 2016, vol. 6, p. e34955. doi 10.1038/srep34955

    Article  CAS  Google Scholar 

  10. Brownlie, J.C. and Johnson, K.N., Symbiont-mediated protection in insect hosts, Trends Microbiol., 2009, vol. 17, pp. 348–354.

    Article  CAS  PubMed  Google Scholar 

  11. Brownlie, J.C., Adamski, M., Slatko, B., and McGraw, E.A., Diversifying selection and host adaptation in two endosymbiont genomes, BMC Evol. Biol., 2007, vol. 7, p. 68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Casiraghi, M., Favia, G., Cancrini, G., et al., Molecular identification of Wolbachia from the filarial nematode Mansonella ozzardi, Parasitol. Res., 2001, vol. 87, no. 5, pp. 417–420. doi 10.1007/s004360000368

    Article  CAS  PubMed  Google Scholar 

  13. Casiraghi, M., Werren, J.H., Bazzocchi, C., et al., dnaA gene sequences from Wolbachia pipientis support subdivision into supergroups and provide no evidence for recombination in the lineages infecting nematodes, Parasitologia, 2003, vol. 45, pp. 13–18.

    CAS  Google Scholar 

  14. Casiraghi, M., Bain, O., Guerrero, R., et al., Mapping the presence of Wolbachia pipientis on the phylogeny of filarial nematodes: evidence for symbiont loss during evolution, Int. J. Parasitol., 2004, vol. 34, pp. 191–203. doi 10.1016/j.ijpara.2003.10.004

    Article  PubMed  Google Scholar 

  15. Chabaud, A.G. and Bain, O., The evolutionary expansion of the Spirurida, Int. J. Parasitol., 1994, vol. 24, pp. 1179–1201.

    Article  CAS  PubMed  Google Scholar 

  16. Choi, Y.J., Lin, C.P., Ho, J.J., et al., A deep sequencing approach to comparatively analyze the transcriptome of lifecycle stages of the filarial worm, Brugia malayi, PLoS Neglected Trop. Dis., 2011, vol. 5, p. e1409. PMID doi 10.1371/journal.pntd.000140922180794

    Article  CAS  Google Scholar 

  17. Comandatore, F., Sassera, D., Montagna, M., et al., Phylogenomics and analysis of shared genes suggest a single transition to mutualism in Wolbachia of nematodes, Genome Biol. Evol., 2013, vol. 5, pp. 1668–1674. doi 10.1093/gbe/evt125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cotton, J.A., Bennuru, S., Grote, A., et al., The genome of Onchocerca volvulus, agent of river blindness, Nat. Microbiol., 2016, vol. 2, art. ID 16216. doi 10.1038/nmicrobiol.2016.216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Darby, A.C., Armstrong, S.D., Bah, G.S., et al., Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis, Genome Res., 2012, vol. 22, no. 12, pp. 2467–2477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Desjardins, C.A., Cerqueira, G.C., Goldberg, J.M., et al., Genomics of Loa loa, a Wolbachia-free filarial parasite of humans, Nat. Genet., 2013, vol. 45, no. 5, pp. 495–500. doi 10.1038/ng.2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Douglas, A., Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera, Ann. Rev. Entomol., 1998, vol. 43, pp. 17–37.

    Article  CAS  Google Scholar 

  22. Dunning Hotopp, J.C., Lin, M., Madupu, R., et al., Comparative genomics of emerging human ehrlichiosis agents, PLoS Genet., 2006, vol. 2, no. 2, p. e21.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Engelstädter, J. and Hurst, G.D.D., The ecology and evolution of microbes that manipulate host reproduction, Ann. Rev. Ecol. Evol. Syst., 2009, vol. 40, pp. 127–149. doi 10.1146/annurev.ecolsys.110308.120206

  24. Fenn, K. and Blaxter, M., Quantification of Wolbachia bacteria in Brugia malayi throughout the nematode lifecycle, Mol. Biochem. Parasitol., 2004, vol. 137, pp. 361–364.

    Article  CAS  PubMed  Google Scholar 

  25. Ferrari, J. and Vavre, F., Bacterial symbionts in insects or the story of communities affecting communities, Philos. Trans. R. Soc., B, 2011, vol. 366, pp. 1389–1400.

  26. Ferree, P.M., Frydman, H.M., Li J.M., et al., Wolbachia utilizes host microtubules and dynein for anterior localization in the Drosophila oocyte, PLoS Pathog., 2005, vol. 1, p. e14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ferri, E., Bain, O., Barbuto, M., et al., New insights into the evolution of Wolbachia infections in filarial nematodes inferred from a large range of screened species, PLoS One, 2011, vol. 6, p. e20843. doi 10.1371/journal.pone.0020843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fischer, K., Beatty, W.L., Jiang, D., et al., Tissue and stagespecific distribution of Wolbachia in Brugia malayi, PLoS Neglected Trop. Dis., 2011, vol. 5, p. e1174.

    Article  Google Scholar 

  29. Foster, J., Ganatra, M., Kamal, I., et al., The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode, PLoS Biol., 2005, vol. 3, no. 4, p. e121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Foster, J., Hoerauf, A., Slatko, B., and Taylor, M., The molecular biology, immunology and chemotherapy of Wolbachia bacterial endosymbionts of filarial nematodes, in Parasitic Nematodes: Molecular Biology, Biochemistry and Immunology, Kennedy, M. and Harnett, W., Eds., Wallingford: CABI, 2013, pp. 308–336.

    Google Scholar 

  31. Gerth, M., Gansauge, M.T., Weigert, A., and Bleidorn, C., Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic, Nat. Commun., 2014, vol. 5, p. e5117. doi 10.1038/ncomms6117

    Article  CAS  Google Scholar 

  32. Glowska, E., Dragun-Damian, A., Dabert, M., and Gerth, M., New Wolbachia supergroups detected in quill mites (Acari: Syringophilidae), Infect., Genet. Evol., 2015, vol. 30, p. e140. doi 10.1016/j.meegid.2014.12.019

    Article  Google Scholar 

  33. Godel, C., Kumar, S., Koutsovoulos, G., et al., The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets, FASEB J., 2012, vol. 26, no. 11, pp. 4650–4661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goryacheva, I.I. and Andrianov, B.V., Biological effects of the symbiosis between insects and intracellular bacteria Wolbachia pipientis, Biol. Bull. Rev., 2016, vol. 6, no. 6, pp. 530–544.

    Article  Google Scholar 

  35. Grote, A., Lustigman, S., and Ghedin, E., Lessons from the genomes and transcriptomes of filarial nematodes, Mol. Biochem. Parasitol., 2017a, vol. 215, pp. 23–29. doi 10.1016/j.molbiopara.2017.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Grote, A., Voronin, D., Ding, T., et al., Defining Brugia malayi and Wolbachia symbiosis by stage-specific dual RNAseq, PLoS Neglected Trop. Dis., 2017b, vol. 11, no. 3, p. e0005357. doi 10.1371/journal.pntd.0005357

    Article  CAS  Google Scholar 

  37. Haegeman, A., Vanholme, B., Jacob, J., et al., An endosymbiotic bacterium in a plant-parasitic nematode: member of a new Wolbachia supergroup, Int. J. Parasitol., 2009, vol. 39, pp. 1045–1054. doi 10.1016/j.ijpara.2009.01.006

    Article  PubMed  Google Scholar 

  38. Hilgenboecker, K., Hammerstein, P., Schlattmann, P., et al., How many species are infected with Wolbachia?—A statistical analysis of current data, FEMS Microbiol. Lett., 2008, vol. 281, no. 2, pp. 215–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ioannidis, P., Johnston, K.L., Riley, D.R., et al., Extensively duplicated and transcriptionally active recent lateral gene transfer from a bacterial Wolbachia endosymbiont to its host filarial nematode Brugia malayi, BMC Genomics, 2013, vol. 14, no. 1, pp. 1–17.

    Article  CAS  Google Scholar 

  40. Jha, R., Gangwar, M., Chahar, D., et al., Humans from Wuchereria bancrofti endemic area elicit substantial immune response to proteins of the filarial parasite Brugia malayi and its endosymbiont Wolbachia, Parasites Vectors, 2017, vol. 10, no. 1, p. 40. doi 10.1186/s13071-016-1963-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koutsovoulos, G., Makepeace, B., Tanya, V.N., and Blaxter, M., Palaeosymbiosis revealed by genomic fossils of Wolbachia in a strongyloidean nematode, PLoS Genet., 2014, vol. 10, no. 6, p. e1004397. doi 10.1371/journal.pgen.1004397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kozek, W.J., Ultrastructure of the microfilaria of Dirofilaria immitis, J. Parasitol., 1971, vol. 57, pp. 1052–1067. doi 10.2307/3277865

    Article  CAS  PubMed  Google Scholar 

  43. Kozek, W.J. and Marroquin, H.F., Intracytoplasmic bacteria in Onchocerca volvulus, Am. J. Trop. Med. Hyg., 1977, vol. 26, pp. 663–678.

    Article  CAS  PubMed  Google Scholar 

  44. Kronefeld, M., Kampen, H., Sassnau, R., and Werner, D., Molecular evidence for the occurrence of Dirofilaria immitis, Dirofilaria repens, and Setaria tundra in mosquitoes from Germany, Parasite Vectors, 2014, vol. 7, p. 30.

    Article  CAS  Google Scholar 

  45. Landmann, F., Foster, J.M., Slatko, B., and Sullivan, W., Asymmetric Wolbachia segregation during early Brugia malayi embryogenesis determines its distribution in adult host tissues, PLoS Neglected Trop. Dis., 2010, vol. 4, p. e758.

    Article  CAS  Google Scholar 

  46. Landmann, F., Voronin, D., Sullivan, W., and Taylor, M.J., Anti-filarial activity of antibiotic therapy is due to extensive apoptosis after Wolbachia depletion from filarial nematodes, PLoS Pathog., 2011, vol. 7, p. e1002351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Landmann, F., Foster, J.M., Michalski, M.L., et al., Coevolution between an endosymbiont and its nematode host: Wolbachia asymmetric posterior localization and AP polarity establishment, PLoS Neglected Trop. Dis., 2014, vol. 8, no. 8, p. e3096. doi 10.1371/journal.pntd.0003096

    Article  Google Scholar 

  48. Lefoulon, E., Gavotte, L., Junker, K., et al., A new type F Wolbachia from Splendidofilariinae (Onchocercidae) supports the recent emergence of this supergroup, Int. J. Parasitol., 2012, vol. 42, pp. 1025–1036.

    Article  CAS  PubMed  Google Scholar 

  49. Lefoulon, E., Bain, O., Makepeace, B.L., et al., Breakdown of coevolution between symbiotic bacteria Wolbachia and their filarial hosts, PeerJ., 2016, vol. 4, p. e1840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, Z. and Carlow, C.K., Characterization of transcription factors that regulate the type IV secretion system and riboflavin biosynthesis in Wolbachia of Brugia malayi, PLoS One, 2012, vol. 7, p. e51597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lo, N., Casiraghi, M., Salati, E., et al., How many Wolbachia supergroups exist? Mol. Biol. Evol. 2002, vol. 19, pp. 341–346. doi 10.1093/oxfordjournals.molbev.a004087

    Article  CAS  PubMed  Google Scholar 

  52. Luck, A.N., Anderson, K.G., McClung, C.M., et al., Tissue-specific transcriptomics and proteomics of a filarial nematode and its Wolbachia endosymbiont, BMC Genomics, 2015, vol. 16, p. 920. doi 10.1186/s12864-015-2083-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. McCall, J., Jun, J.J., and Bandi, C., Wolbachia and the antifilarial properties of tetracycline. An untold story, Ital. J. Zool., 1999, vol. 66, pp. 7–10.

    Article  Google Scholar 

  54. McGarry, H.F., Egerton, G.L., and Taylor, M.J., Population dynamics of Wolbachia bacterial endosymbionts in Brugia malayi, Mol. Biochem. Parasitol., 2004, vol. 135, pp. 57–67.

    Article  CAS  PubMed  Google Scholar 

  55. McLaren, D.J., Worms, M.J., Laurence, B.R., and Simpson, M.G., Microorganisms in filarial larvae (Nematoda), Trans. R. Soc. Trop. Med. Hyg., 1975, vol. 69, pp. 509–514. doi 10.1016/0035-9203(75)90110-8

    Article  CAS  PubMed  Google Scholar 

  56. McNulty, S., Foster, J., Mitreva, M., et al., Endosymbiont DNA in endobacteria-free filarial nematodes indicates ancient horizontal genetic transfer, PLoS One, 2010, vol. 5, no. 6, p. e11029. doi 10.1371/journal.pone.0011029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Osei-Atweneboana, M.Y., Awadzi, K., Attah, S.K., et al., Phenotypic evidence of emerging ivermectin resistance in Onchocerca volvulus, PLoS Neglected Trop. Dis., 2011, vol. 5, p. e998.

    Article  Google Scholar 

  58. Panteleev, D.Yu., Goryacheva, I.I., Andrianov, B.V., et al., The endosymbiotic bacterium Wolbachia enhances the nonspecific resistance to insect pathogens and alters behavior of Drosophila melanogaster, Russ. J. Genet., 2007, vol. 43, no. 9, pp. 1066–1069.

    Article  CAS  Google Scholar 

  59. Parazitarnye bolezni cheloveka (protozoozy i gel’mintozy). Rukovodstvo dlya vrachei (Parasitic Human Diseases(Protozoosis and Helminthiases): Manual for Physicians), Sergiev, V.P., Lobzin, Yu.V., and Kozlov, S.S., Eds., St. Petersburg: Foliant, 2008.

    Google Scholar 

  60. Pfarr, K., Foster, J., Slatko, B., et al., On the taxonomic status of the intracellular bacterium Wolbachia pipientis: should this species name include the intracellular bacteria of filarial nematodes, Int. J. Syst. Evol. Microbiol., 2007, vol. 57, pp. 1677–1678.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Rakova, V.M., Molecular and biological diagnostics of dirofilariasis in the organism of definitive host and carrier, Cand. Sci. (Biol.) Dissertation, Moscow, Sechenov First Moscow State Med. Univ., 2013, pp. 51–109.

  62. Ramirez-Puebla, S.T., Servin-Garciduenas, L.E., Ormeno-Orrillo, E., et al., Species in Wolbachia? Proposal for the designation of ‘Candidatus Wolbachia bourtzisii,’ ‘Candidatus Wolbachia onchocercicola,’ ‘Candidatus Wolbachia blaxteri,’ ‘Candidatus Wolbachia brugii’, ‘Candidatus Wolbachia taylori,’ ‘Candidatus Wolbachia collembolicola’ and ‘Candidatus Wolbachia multihospitum’ for the different species within Wolbachia supergroups, Syst. Appl. Microbiol., 2015, vol. 38, pp. 390–399.

    Article  PubMed  Google Scholar 

  63. Rao, R.U., Huang, Y., Abubucker, S., et al., Effects of doxycycline on gene expression in Wolbachia and Brugia malayi adult female worms in vivo, J. Biomed. Sci., 2012, vol. 19, p. 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sergiev, V.P., Supryaga, V.G., Bronshtein, A.M., et al., Human dirofilariasis in Russia: study results, Med. Parazitol. Parazit. Bolezni, 2014, no. 3, pp. 3–9.

  65. Sironi, M., Bandi, C., Sacchi, L., et al., Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm, Mol. Biochem. Parasitol., 1995, vol. 74, pp. 223–227.

    Article  CAS  PubMed  Google Scholar 

  66. Slatko, B.E., Taylor, M.J., and Foster, J.M., The Wolbachia endosymbiont as an anti-filarial nematode target, Symbiosis, 2010, vol. 51, pp. 55–65.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Slatko, B.E., Luck, A.N., Dobson, S.L., and Foster, J.M., Wolbachia endosymbionts and human disease control, Mol. Biochem. Parasitol., 2014, vol. 195, pp. 88–95. doi 10.1016/j.molbiopara.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  68. Taylor, M.J., Makunde, W.H., McGarry, H.F., et al., Macrofilaricidal activity after doxycycline treatment of Wuchereria bancrofti: a double-blind, randomized placebo-controlled trial, Lancet, 2005, vol. 365, pp. 2116–2121.

    Article  CAS  PubMed  Google Scholar 

  69. Taylor, M.J., Hoerauf, A., and Bockarie, M., Lymphatic filariasis and onchocerciasis, Lancet, 2010, vol. 376, pp. 1175–1185.

    Article  PubMed  Google Scholar 

  70. Taylor, M.J., Voronin, D., Johnston, K.L., and Ford, L., Wolbachia filarial interactions, Cell Microbiol., 2013, vol. 15, pp. 520–526.

    Article  CAS  PubMed  Google Scholar 

  71. Taylor, M.J., Hoerauf, A., Townson, S., et al., Anti-Wolbachia drug discovery and development: safe macrofilaricides for onchocerciasis and lymphatic filariasis, Parasitology, 2014, vol. 141, pp. 119–127.

    Article  CAS  PubMed  Google Scholar 

  72. Tumolskaya, N.I., Pozio, E., Rakova, V.M., et al., Dirofilaria immitis in child from the Russian Federation, Parasite, 2016, vol. 23, p. 37.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Werren, J.H., Baldo, L., and Clark, M.E., Wolbachia: master manipulators of invertebrate biology, Nat. Rev. Microbiol., 2008, vol. 6, pp. 741–751.

    Article  CAS  PubMed  Google Scholar 

  74. Zakharov, I.A., Horizontal gene transfer into the genomes of insects, Russ. J. Genet., 2016, vol. 52, no. 7, pp. 702–707.

    Article  CAS  Google Scholar 

  75. Zug, R. and Hammerstein, P., Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts, Biol. Rev., 2015, vol. 90, pp. 89–111.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 16-04-00091.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Shaikevich or L. A. Ganushkina.

Ethics declarations

Сonflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by A. Panyushkina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikevich, E.V., Ganushkina, L.A. Wolbachia Bacteria and Filarial Nematodes: Mutual Benefit and the Parasite’s Achilles’ Heel. Biol Bull Rev 8, 509–517 (2018). https://doi.org/10.1134/S2079086418060099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086418060099

Keywords:

Navigation