Skip to main content
Log in

Peculiarities of Meiosis in Drosophila: A Classical Object of Genetics Has Nonstandard Meiosis

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Meiosis in Drosophila differs from the canonical type. Males lack synaptonemal complexes, chiasmata, and crossing-over. Only females have these classical traits of meiosis. However, during meiosis prophase I, female Drosophila lack the bouquet-like chromosome arrangement, an accessory mechanism for homologous chromosomes synapsis that is typical for the majority of eukaryotes. Instead, the pericentromeric heterochromatic regions of chromosomes are fused into the chromocenter. This leads to peculiarities in the pairing, synapsis, and segregation of chromosomes and to the so-called interchromosomal phenomena (effects). During late prophase I in females, chromosomes are packed in a karyosome, which is also characteristic of females in other animals with the nutrimental type of egg nutrition. The dissimilarities of meiosis in Drosophila from the classical scheme do not affect significantly its genetic consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anuradha, S. and Muniyappa, K., Molecular aspects of meiotic chromosome synapsis and recombination, Prog. Nucleic Acid Res. Mol. Biol., 2005, vol. 79, pp. 49–132.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, L.K., Royer, S.M., Page, S.L., et al., Juxtaposition of C(2)M and the transverse filament protein C(3)G within the central region of Drosophila synaptonemal complex, Proc. Natl. Acad. Sci. U.S.A., 2005, vol. 102, pp. 4482–4487.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arya, G.H., Lodico, M.J.P., Ahmad, O.I., et al., Molecular characterization of teflon, a gene required for meiotic autosome segregation in male Drosophila melanogaster, Genetics, 2006, vol. 174, pp. 125–134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker, B.S. and Hall, J.S., Meiotic mutants: genetic control of meiotic recombination and chromosome segregation, in The Genetics and Biology of Drosophila, Ashburner, M. and Novitski, E.L., Eds., New York: Academic, 1976, vol. 1A, pp. 352–434.

    Google Scholar 

  • Basheva, E.A., Borodin, P.M., and Bidau, C.J., General pattern of meiotic recombination in male dogs estimated by MLH1 and RAD51 immunolocalization, Chromosome Res., 2008, vol. 16, pp. 709–719.

    Article  PubMed  CAS  Google Scholar 

  • Bickel, S.E., Wyman, D.W., Miyazaki, W.Y., et al., Identification of ORD, a Drosophila protein essential for sister chromatid cohesion, EMBO J., 1996, vol. 15, pp. 1451–1459.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bogdanov, Yu.F., Dadashev, S.Ya., and Grishaeva, T.M., Comparative genomics and proteomics of Drosophila, Brenner’s nematode, and Arabidopsis: identification of functionally similar genes and proteins of meiotic chromosome synapsis, Russ. J. Genet., 2002, vol. 38, no. 8, pp. 908–917.

    Article  CAS  Google Scholar 

  • Bogdanov, Yu.F., Grishaeva, T.M., and Dadashev, S.Ya., Similarity of the domain structure of proteins as a basis for the conservation of meiosis, Int. Rev. Cytol., 2007, vol. 257, pp. 83–142.

    Article  PubMed  CAS  Google Scholar 

  • Bridges, C.B., Sex in relation to chromosomes and genes, Am. Nat., 1925, vol. 59, pp. 127–137.

    Article  Google Scholar 

  • Bostock, C.J. and Sumner, A.T., The Eukaryotic Chromosome, Amsterdam: North Holland, 1978.

    Google Scholar 

  • Büning, J., The Insect Ovary: Ultrastructure, Previtellogenic Growth and Evolution, New York: Chapman and Hall, 1994.

    Book  Google Scholar 

  • Cahoon, C.K. and Hawley, R.S., Flies get a head start on meiosis, PLoS Genet., 2013, vol. 9, p. e1004051.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carotti, R.D., Marco, A.G., Andolfo, M., and Toti, L., Non-disjunction and heterochromatin in the meiosis of males of Drosophila melanogaster, Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend., 1973, vol. 53, pp. 192–197.

    Google Scholar 

  • Carpenter, A.T.C., A meiotic mutant defective in distributive disjunction in Drosophila melanogaster, Genetics, 1973, vol. 73, pp. 393–428.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Carpenter, A.T.C., Electron microscopy of meiosis in Drosophila melanogaster females. I. Structure, arrangement and temporal change of the synaptonemal complex in wild type, Chromosoma, 1975a, vol. 51, pp. 157–182.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, A.T.C., Electron microscopy of meiosis in Drosophila melanogaster females. II. The recombination nodule—a recombination-associated structure at pachytene?, Proc. Natl. Acad. Sci. U.S.A., 1975b, vol. 72, pp. 3186–3189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carpenter, A.T.C., Synaptonemal complexes and recombination nodules in wild-type Drosophila melanogaster females, Genetics, 1979, vol. 92, pp. 511–541.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Carpenter, A.T.C., EM autoradiographic evidence that DNA synthesis occurs at recombination nodules during meiosis in Drosophila melanogaster females, Chromosoma, 1981, vol. 83, pp. 59–80.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, A.T.C. and Baker, B.S., Genic control of meiosis and some observations on the synaptonemal complex in Drosophila melanogaster, in Mechanisms in Recombination, Grell, R.F., Ed., New York: Springer-Verlag, 1974, pp. 365–375.

    Chapter  Google Scholar 

  • Christophorou, N., Rubin, T., and Huynh, J.-R., Synaptonemal complex components centromere pairing in premeiotic germ cells, PLoS Genet., 2013, vol. 9, p. e1004012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chua, P.R. and Roeder, G.S., Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis, Cell, 1998, vol. 93, pp. 349–359.

    PubMed  CAS  Google Scholar 

  • Chubykin, V.L., Structure of chromocenter in oocytes, initiation of homologous pairing and regulation of crossover metabolism in Drosophila, Tsitologiya, 1995, vol. 37, pp. 481–490.

    CAS  Google Scholar 

  • Chubykin, V.L., The role of the chromocenter in nonrandom meiotic segregation of nonhomologous chromosomes in Drosophila melanogaster females, Russ. J. Genet., 2001, vol. 37, no. 3, pp. 205–212.

    Article  CAS  Google Scholar 

  • Chubykin, V.L., Chromocentral nature of interchromosome connections coorienting nonhomologous chromosomes in meiosis of Drosophila melanogaster females, Russ. J. Genet., 2009, vol. 45, no. 9, pp. 1027–1039.

    Article  CAS  Google Scholar 

  • Church, K. and Lin, H.-P.P., Kinetochore microtubules and chromosome movement during prometaphase in Drosophila melanogaster spermatocytes studied in life and with the electron microscope, Chromosoma, 1985, vol. 92, pp. 273–282.

    Article  PubMed  CAS  Google Scholar 

  • Cline, T.W. and Meyer, B.J., Vive la difference: males vs females in flies vs worms, Annu. Rev. Genet., 1996, vol. 30, pp. 637–702.

    Article  PubMed  CAS  Google Scholar 

  • Collins, K.A., Unruh, J.R., Slaughter, B.D., et al., Corolla is a novel protein that contributes to the architecture of the synaptonemal complex of Drosophila, Genetics, 2014, vol. 198, pp. 219–228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooper, K.W., Meiotic conjunctive elements not involving chiasmata, Proc. Natl. Acad. Sci. U.S.A., 1964, vol. 52, pp. 1248–1255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooper, K.W., Zimmering, S., and Krivshenko, J., Interchromosomal effects and segregation, Proc. Natl. Acad. Sci. U.S.A., 1955, vol. 41, pp. 911–914.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dävring, L. and Sunner, M., Female meiosis and embryonic mitosis in Drosophila melanogaster. I. Meiosis and fertilization, Hereditas, 1973, vol. 73, pp. 51–64.

    Article  PubMed  Google Scholar 

  • Egel, R., Synaptonemal complex and crossing-over: structural support or interference?, Heredity (Edinburgh), 1978, vol. 41, pp. 233–237. FlyBase. https://doi.org/flybase.org/.

    Article  CAS  Google Scholar 

  • Funabiki, H., Hagan, I., Uzawa, S., and Yanagida, M., Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast, J. Cell Biol., 1993, vol. 121, pp. 961–976.

    Article  PubMed  CAS  Google Scholar 

  • Grell, R.F., A new model for secondary nondisjunction: the role of distributive pairing, Genetics, 1962, vol. 47, pp. 1737–1754.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Grishaeva, T.M. and Bogdanov, Yu.F., A search for the Xchromosomal region that controls formation of the synaptonemal complex in Drosophila, Genetika, 1986, vol. 22, pp. 343–345.

    Google Scholar 

  • Grishaeva, T.M. and Bogdanov, Yu.F., Dependence on genic balance for synaptonemal complex formation in Drosophila melanogaster, Genome, 1988, vol. 30, pp. 258–264.

    Article  Google Scholar 

  • Grishaeva, T.M. and Bogdanov, Yu.F., Genetic control of meiosis in Drosophila, Russ. J. Genet., 2000, vol. 36, no. 10, pp. 1089–1106.

    CAS  Google Scholar 

  • Grishaeva, T.M. and Bogdanov, Yu.F., Conservation and variability of synaptonemal complex proteins in phylogenesis of eukaryotes, Int. J. Evol. Biol., 2014, vol. 2014, art. ID 856230.

  • Grishaeva, T.M., Dadashev, S.Ya., and Bogdanov, Yu.F., Gene CG17604 of Drosophila melanogaster predicted in silico may be the c(3)G gene, Drosophila Inf. Serv., 2001, vol. 84, pp. 84–88.

    Google Scholar 

  • Gruzova, M.N., Some aspects of meiosis in oogenesis, in Tsitologiya i genetika meioza (Cytology and Genetics of Meiosis), Moscow: Nauka, 1975, pp. 113–137.

    Google Scholar 

  • Gruzova, M.N., Zaichikova, Z.P., and Sokolov, I.I., Functional organization of the nucleus in oogenesis of Chrysopa perla L. (Insecta, Neuroptera), Chromosoma, 1972, vol. 37, pp. 353–386.

    PubMed  CAS  Google Scholar 

  • Halfer, C. and Barigozzi, C., Prophase synapses in somatic cells of Drosophila melanogaster, Chromosomes Today, 1973, vol. 4, pp. 181–185.

    CAS  Google Scholar 

  • Hawley, R.S., How male flies do meiosis, Curr. Biol., 2002, vol. 12, pp. R660–R662.

    Article  PubMed  CAS  Google Scholar 

  • Hawley, R.S., Solving a meiotic LEGO puzzle: transverse filaments and the assembly of the synaptonemal complex in Caenorhabditis elegans, Genetics, 2011, vol. 189, pp. 405–409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hawley, R.S., Irick, H., Haddox, D.A., et al., There are two mechanisms of achiasmate segregation in Drosophila females, one of which requires heterochromatic homology, Dev. Genet., 1992, vol. 13, pp. 440–467.

    PubMed  CAS  Google Scholar 

  • Hawley, R.S., McKim, K.S., and Arbel, T., Meiotic segregation in Drosophila melanogaster females: molecules, mechanisms, and myths, Ann. Rev. Genet., 1993, vol. 27, pp. 281–317.

    Article  PubMed  CAS  Google Scholar 

  • Heidmann, D., Horn, S., Heidmann, S., et al., The Drosophila meiotic kleisin C(2)M functions before the meiotic divisions, Chromosoma, 2004, vol. 113, pp. 177–187.

    Article  PubMed  CAS  Google Scholar 

  • Heiting, C., Synaptonemal complex: structure and function, Curr. Opin. Cell Biol., 1996, vol. 8, pp. 389–396.

    Article  Google Scholar 

  • Hollingsworth, N.M., Ponte, L., and Halsey, C., MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologes in Saccharomyces cerevisiae but not mismatch repair, Genes Dev., 1995, vol. 9, pp. 1728–1739.

    CAS  Google Scholar 

  • Hunter, N. and Borts, R.H., Mlh1 is unique among mismatch repair proteins in its ability to promote crossingover during meiosis, Genes Dev., 1997, vol. 11, pp. 1573–1582.

    Article  PubMed  CAS  Google Scholar 

  • Huynh, J.-R. and St Johnston, D., The origin of asymmetry: early polarization of the Drosophila germline cyst and oocyte, Curr. Biol., 2004, vol. 14, pp. R438–R449.

    Article  PubMed  CAS  Google Scholar 

  • Jang, J.K., Sherizen, D.E., Bhagat, R., Manheim, E.A., et al., Relationship of DNA double-strand breaks to synapses in Drosophila, J. Cell. Sci., 2003, vol. 116, pp. 3069–3077.

    Article  PubMed  CAS  Google Scholar 

  • Joyce, E.F., Apotolopoulos, N., Beliveau, B.J., and Wu, C.T., Germline progenitors escape the wide-spread phenomenon of homolog pairing during Drosophila development, PLoS Genet., 2013, vol. 9, p. e1004013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kaufman, B.P., Somatic mitosis of Drosophila melanogaster, J. Morphol., 1934, vol. 56, pp. 125–156.

    Article  Google Scholar 

  • Koch, E.A., Smith, P.A., and King, R.C., The division and differentiation of Drosophila cystocytes, J. Morphol., 1967, vol. 121, pp. 55–70.

    Article  PubMed  CAS  Google Scholar 

  • King, R.C., Ovarian Development in Drosophila melanogaster, New York: Academic, 1970a.

    Google Scholar 

  • King, R.C., The meiotic behavior of the Drosophila oocyte, Int. Rev. Cytol., 1970b, vol. 28, pp. 125–168.

    Article  PubMed  CAS  Google Scholar 

  • Lake, C.M. and Hawley, R.S., The molecular control of meiotic chromosomal behavior: events in early meiotic prophase in Drosophila oocytes, Annu. Rev. Physiol., 2012, vol. 74, pp. 425–451.

    Article  PubMed  CAS  Google Scholar 

  • Lake, C.M., Nielsen, R.J., Guo, F., et al., Vilya, a component of the recombination nodule, is required for meiotic double-strand break formation in Drosophila, eLife, 2015, vol. 4, p. e08287.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lima-de-Faria, A., Molecular Evolution and Organization of the Chromosome, Amsterdam: Elsevier, 1983.

    Google Scholar 

  • Litvinova, E.M., Reproduction biology of Drosophila, in Problemy genetiki v issledovaniyakh na drozofile (Problems of Genetics Studies of Drosophila), Novosibirsk: Nauka, 1977, pp. 19–61.

    Google Scholar 

  • Liu, H., Jang, J.K., Kato, N., and McKim, K.S., mei-P22 encodes a chromosome-associated protein required for the initiation of meiotic recombination in Drosophila melanogaster, Genetics, 2002, vol. 162, pp. 245–258.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lorenz, A., Estereicher, A., Kohli, J., and Loidl, J., Meiotic recombination proteins localize to linear elements in Schizosaccaromyces pombe, Chromosoma, 2006, vol. 115, pp. 330–340.

    Article  PubMed  CAS  Google Scholar 

  • Lucchesi, J.C., Interchromosomal effects, in The Genetics and Biology of Drosophila, London: Academic, 1976, vol. 1A, pp. 315–329.

    Google Scholar 

  • Lucchesi, J.C. and Suzuki, D.T., The interchromosomal control of recombination, Ann. Rev. Genet., 1968, vol. 2, pp. 53–86.

    Article  Google Scholar 

  • Manheim, E.A. and McKim, K.S., The synaptonemal complex component C(2)M regulates meiotic crossing over in Drosophila, Curr. Biol., 2003, vol. 13, pp. 276–285.

    Article  PubMed  CAS  Google Scholar 

  • McKee, B.D., Habera, I., and Vrana, J.A., Evidence that intergenic spacer repeats of Drosophila melanogaster rRNA genes function as X-Y pairing sites in male meiosis, and a general model for achiasmatic pairing, Genetics, 1992, vol. 132, pp. 529–544.

    PubMed  PubMed Central  CAS  Google Scholar 

  • McKim, K.S., Jang, J.K., and Manheim, E.A., Meiotic recombination and chromosome segregation in Drosophila females, Annu. Rev. Genet., 2002, vol. 36, pp. 205–232.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, G.F., Hess, O., and Beermann, W., Phasenspezifische Funktionsstrukturen in Spermatocytenkernen von Drosophila melanogaster und Ihre Abhängigkeit vom Y-Chromosom, Chromosoma, 1961, vol. 12, pp. 676–716.

    Article  PubMed  CAS  Google Scholar 

  • Moens, P.B., Kolas, N., Tarsounas, M., and Spyropoulos, B., Interaction of recombination proteins RAD51/DMC1, RPA and BLM in mouse and rat synaptonemal complex associated recombination nodules, J. Exp. Bot., 2001, vol. 52, suppl., p. 101.

    Google Scholar 

  • Monakhova, M.A., Centromeric ring in sexual cells of Chorthippus biguttules, Dokl. Akad. Nauk SSSR, 1973, vol. 213, pp. 205–208.

    PubMed  CAS  Google Scholar 

  • Moore, D.P., Miyazaki, W.Y., Tomkiel, J.E., and Orr-Weaver, T.L., Double or nothing: a Drosophila mutation affecting meiotic chromosome segregation in both females and males, Genetics, 1994, vol. 136, pp. 953–964.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Nokkala, S. and Puro, J., Cytological evidence for a chromocenter in Drosophila melanogaster oocytes, Hereditas, 1976, vol. 83, pp. 265–268.

    Article  PubMed  CAS  Google Scholar 

  • Novitski, E., Evidence for the single phase pairing theory of meiosis, Genetics, 1975, vol. 79, pp. 63–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Novitsky, E. and Puro, J., A critique of theories of meiosis in the female of Drosophila melanogaster, Hereditas, 1978, vol. 89, pp. 51–67.

    Article  Google Scholar 

  • Oksala, T.A., The effect of autosomal inversion heterozygosity on crossing-over frequency in the X chromosome of D. melanogaster, Drosophila Inf. Serv., 1962, vol. 36, pp. 104–105.

    Google Scholar 

  • Orr-Weaver, T.L., Meiosis in Drosophila: seeing is believing, Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, pp. 10443–10449.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Page, S.L. and Hawley, R.S., c(3)G encodes a Drosophila synaptonemal complex protein, Genes Dev., 2001, vol. 15, pp. 3130–3143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Page, S.L. and Hawley, R.S., Chromosome choreography: the meiotic ballet, Science, 2003, vol. 301, pp. 785–789.

    Article  PubMed  CAS  Google Scholar 

  • Page, S.L. and Hawley, R.S., The genetics and molecular biology of the synaptonemal complex, Annu. Rev. Cell Dev. Biol., 2004, vol. 20, pp. 525–558.

    Article  PubMed  CAS  Google Scholar 

  • Page, S.L., Khetani, R.S., Lake, C.M., et al., corona is required for higher-order assembly of transverse filaments into full-length synaptonemal complex in Drosophila oocytes, PLoS Genet., 2008, vol. 4, p. e1000194.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Penkina, M.V., Karpova, O.I., and Bogdanov, Yu.F., Synaptonemal complex proteins are specific proteins of meiotic chromosomes, Mol. Biol. (Moscow), 2002, vol. 36, pp. 397–407.

    Article  CAS  Google Scholar 

  • Prokof’eva-Bel’govskaya, A.A., Geterokhromnye raiony khromosom (Heterochromatic Regions of Chromosomes), Moscow: Nauka, 1986.

    Google Scholar 

  • Rasmussen, S.W., Ultrastructural studies of spermatogenesis in Drosophila melanogaster Meigen, Z. Zellforsch. Microsk. Anat., 1973, vol. 140, pp. 125–144.

    Article  CAS  Google Scholar 

  • Rasmussen, S.W., Studies on the development of synaptonemal complex in Drosophila melanogaster, C. R. Trav. Lab. Carlsberg, 1974, vol. 39, pp. 443–468.

    Google Scholar 

  • Rasmussen, S.W. and Holm, P.B., Mechanics of meiosis, Hereditas, 1980, vol. 93, pp. 187–216.

    Article  PubMed  CAS  Google Scholar 

  • Roeder, G.S., Meiotic chromosomes: it takes two to tango, Genes Dev., 1997, vol. 11, pp. 2600–2621.

    Article  PubMed  CAS  Google Scholar 

  • Ross-Macdonald, P. and Roeder, G.S., Mutation of a meiosis-specific MutS homolog decreases crossing over but not mismatch correction, Cell, 1994, vol. 79, pp. 1069–1080.

    Article  PubMed  CAS  Google Scholar 

  • Semenov, E.P. and Smirnov, A.F., Somatic conjugation of chromosomes in Drosophila melanogaster. Part 1. Conjugation of eu- and heterochromatin regions of chromosomes at different stages of the cell cycle, Genetika, 1979, vol. 15, pp. 2156–2167.

    Google Scholar 

  • Smith, P.A. and King, R.C., Genetic control of synaptonemal complexes in Drosophila melanogaster, Genetics, 1968, vol. 60, pp. 335–351.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Spradling, A., Developmental genetics of oogenesis, in The Development of Drosophila melanogaster, Bate, M. and Martinez-Arias, A., Eds., New York: Cold Spring Harbor Lab. Press, 1993, vol. 1, pp. 1–70.

    Google Scholar 

  • Suzuki, D.T., Interchromosomal effect on crossing over in Drosophila melanogaster. II. The reexamination of X chromosome inversion effects, Genetics, 1963, vol. 48, pp. 1605–1617.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Takeo, S., Swanson, S.K., Nandanan, K., et al., Shaggy/glycogen synthase kinase 3β and phosphorylation of Sarah/regulator of calcineurin are essential for completion of Drosophila female meiosis, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, pp. 6382–6389.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tanneti, N.S., Landy, K., Joyce, E.F., and McKim, K.S., A pathway for synapsis initiation during zygotene in Drosophila oocytes, Curr. Biol., 2011, vol. 21, pp. 1852–1857.

    Article  PubMed  CAS  Google Scholar 

  • Vazquez, J., Belmont, A.S., and Sedat, J.W., The dynamics of homologous chromosome pairing during male Drosophila meiosis, Curr. Biol., 2002, vol. 12, pp. 1473–1483.

    Article  PubMed  CAS  Google Scholar 

  • Yamomoto, M., Interchromosomal effects of heterochromatic deletions on recombination in Drosophila melanogaster, Genetics, 1979, vol. 93, pp. 437–448.

    Google Scholar 

  • Zickler, D. and Kleckner, N., Meiotic chromosomes: integrating structure and function, Ann. Rev. Genet., 1999, vol. 33, pp. 603–754.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Grishaeva.

Additional information

Original Russian Text © T.M. Grishaeva, Yu.F. Bogdanov, 2018, published in Uspekhi Sovremennoi Biologii, 2018, Vol. 138, No. 1, pp. 68–82.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grishaeva, T.M., Bogdanov, Y.F. Peculiarities of Meiosis in Drosophila: A Classical Object of Genetics Has Nonstandard Meiosis. Biol Bull Rev 8, 279–291 (2018). https://doi.org/10.1134/S2079086418040047

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086418040047

Keywords

Navigation