Skip to main content
Log in

Radiation neurobiology of long-term spaceflights

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Radiation neurobiology is an interdisciplinary field of science studying the effect of radiation on the nervous system at different levels of its organization (biochemical, molecular, cellular, and system), including higher integrative brain activity, influence on health, and efficiency of protection measures against ionizing radiation. A review of studies on the influence of cosmic irradiation on cells and tissues of the central nervous system with the use of photons, X-ray and γ-ray radiation, as well as heavy ions in doses of less than 2 Gy obtained in modern accelerators, is presented. Useful information is given on the higher doses of radiation at which earlier, unstudied biological reactions arise. Special attention is paid to the latest research related to the use of a spectrum of particles and doses corresponding to cosmic irradiation. This review is based on the results of contemporary works of foreign authors that are little known in our country.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharya, M.M., Lan, M.L., Kan, V.H., et al., Consequences of ionizing radiation-induced damage in human neural stem cells, Free Radic. Biol. Med., 2010, vol. 49, no. 12, pp. 1846–1855.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, D.J., Gibson, C.R., Hamilton, D.R., et al., Risk of Spaceflight-Induced Intracranial Hypertension and Vision Alterations: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2012.

    Google Scholar 

  • Ambesi-Impiombato, F.S., Ivanov, A.A., Mancini, A., Belov, O.V., Borrelli, A., Molokanov, A.G., Bulynina, T.M., Vorozhtsova, S.V., Abrosimova, A.N., and Krasavin, E.A., Effect of recombinant manganese superoxide dismutase (rMnSOD) on the hematologic status in mice irradiated by protons, Med. Radiol. Radiats. Bezop., 2014, vol. 59, no. 6, pp. 5–11.

    Google Scholar 

  • Ansari, R., Gaber, M.W., Wang, B., et al., Anti-TNFA (TNF-α) treatment abrogates radiation-induced changes in vascular density and tissue oxygenation, Radiat. Res., 2007, vol. 167, pp. 80–86.

    Article  CAS  PubMed  Google Scholar 

  • Archambeau, J.O., Mao, X.W., McMillan, P.J., et al., Dose response of rat retinal microvessels to proton dose schedules used clinically: a pilot study, Int. J. Radiat. Oncol. Biol. Phys., 2000, vol. 48, pp. 1155–1166.

    Article  CAS  PubMed  Google Scholar 

  • Barr, A., Schuh, S., Connolly, J.H., et al., Risk of error due to inadequate information, in Human Health and Performance Risks of Space Exploration Missions, McPhee, J.C. and Charles, J.B., Eds., Houston: Natl. Aeronaut. Space Admin., 2008.

    Google Scholar 

  • Barshi, I. and Dempsey, D.L., Risk of Performance Errors Due to Training Deficiencies: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2016.

    Google Scholar 

  • Batmunkh, M., Belov, O.V., Bayarchimeg, L., et al., Estimation of the spatial energy deposition in CA1 pyramidal neurons under exposure to 12C and 56Fe ion beams, J. Radiat. Res. Appl. Sci., 2015, vol. 8, pp. 498–507.

    Article  Google Scholar 

  • Baulch, J.E., Craver, B.M., Tran, K.K., et al., Persistent oxidative stress in human neural stem cells exposed to low fluences of charged particles, Redox Biol., 2015, vol. 5, pp. 24–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belarbi, K., Jopson, T., Arellano, C., et al., CCR2 deficiency prevents neuronal dysfunction and cognitive impairments induced by cranial irradiation, Cancer Res., 2012, vol. 73, pp. 1201–1210.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belokopytova, K.V., Belov, O.V., Kudrin, V.S., Narkevich, V.B., Krasavin, E.A., Timoshenko, G.N., and Bazyan, A.S., The dynamics of monoamine metabolism in rat brain structures in the late period after exposure to accelerated carbon ions, Neurochem. J., 2016, vol. 10, no. 2, pp. 137–143.

    Article  CAS  Google Scholar 

  • Bloomberg, J.J., Reschke, M.F., Clement, G.R., et al., Risk of Impaired Control of Spacecraft/Associated Systems and Decreased Mobility Due to Vestibular/Sensorimotor Alterations Associated with Space Flight: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2016.

    Google Scholar 

  • Britten, R.A., Davis, L.K., Johnson, A.M., et al., Low (20 cGy) doses of 1 GeV/u 56Fe-particle radiation lead to a persistent reduction in the spatial learning ability of rats, Radiat. Res., 2012, vol. 177, pp. 146–151.

    Article  CAS  PubMed  Google Scholar 

  • Britten, R.A., Davis, L.K., Jewell, J.S., et al., Exposure to mission relevant doses of 1 GeV/nucleon 56Fe particles leads to impairment of attentional set-shifting performance in socially mature rats, Radiat. Res., 2014, vol. 182, pp. 292–298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caldwell, E., Gernhardt, M., Somers, J.T., et al., Risk of Injury Due to Dynamic Loads: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2012.

    Google Scholar 

  • Carnell, L., Blattnig, S., Hu, S., et al., Risk of Acute Radiation Syndromes Due to Solar Particle Events: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2016.

    Google Scholar 

  • Chancellor, J.C., Scott, G.B.I., and Sutton, J.P., Space radiation: the number one risk to astronaut health beyond low earth orbit, Life, 2014, vol. 4, pp. 491–510.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang, P.Y., Doppalapudi, R., Bakke, J., et al., Biological impact of low dose-rate simulated solar particle event radiation in vivo, Radiat. Environ. Biophys., 2010, vol. 49, no. 3, pp. 379–388.

    Article  CAS  PubMed  Google Scholar 

  • Chappell, S.P., Norcross, J.R., Abercromby, A.F., and Gernhardt, M.L., Risk of Injury and Compromised Performance Due to EVA Operations: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2015.

    Google Scholar 

  • Chatterjee, A., Bhattacharya, S., and Ott, C.M., Risk of Adverse Health Effects Due to Alterations in Host-Microorganism Interactions: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2012.

    Google Scholar 

  • Chekhonin, V.P., Dostizheniya molekulyarnoi i kletochnoi neirobiologii i rol’ meditsinskikh biotekhnologii v ee razvitie (The Achievements of Molecular and Cellular Neurobiology and the Role of Medical Biotechnologies and Its Development), Moscow: INEK, 2010.

    Google Scholar 

  • Cherry, J.D., Liu, B., Frost, J.L., et al., Galactic cosmic radiation leads to cognitive impairment and increased ab plaque accumulation in a mouse model of Alzheimer’s disease, PLoS One, 2012, vol. 7, no. 12, p. e53275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crucian, B., Kunz, H., and Sams, C.F., Risk of Crew Adverse Health Event Due to Altered Immune Response: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2015.

    Google Scholar 

  • Cucinotta, F.A., Review of NASA approach to space radiation risk assessments for Mars exploration, Health Phys., 2015, vol. 108, no. 2, pp. 131–142.

    Article  CAS  PubMed  Google Scholar 

  • Cucinotta, F.A., Nikjoo, H., Goodhead, D.T., et al., Comment on the effects of delta rays on the number of particle- track transversals per cell in laboratory and space exposures, Radiat. Res., 1998, vol. 150, no. 1, pp. 115–119.

    Article  CAS  PubMed  Google Scholar 

  • Davis, C.M., DeCicco-Skinner, K.L., Roma, P.G., et al., Individual differences in attentional deficits and dopaminergic protein levels following exposure to proton radiation, Radiat. Res., 2014, vol. 181, pp. 258–271.

    Article  CAS  PubMed  Google Scholar 

  • Davis, C.M., DeCicco-Skinner, K.L., and Hienz, R.D., Deficits in sustained attention and changes in dopaminergic protein levels following exposure to proton radiation are related to basal dopaminergic function, PLoS One, 2015, vol. 10, no. 12, p. e0144556.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denisova, N.A., Shukitt-Hale, B., Rabin, B.M., et al., Brain signaling and behavioral responses induced by exposure to (56) Fe-particle radiation, Radiat. Res., 2002, vol. 158, pp. 725–734.

    Article  CAS  PubMed  Google Scholar 

  • Desouky, O., Ding, N., and Zhou, G., Targeted and nontargeted effects of ionizing radiation, J. Radiat. Res. Appl. Sci., 2015, vol. 8, no. 2, pp. 247–254.

    Article  CAS  Google Scholar 

  • Downs, M., Moore, A., Lee, S.M., and Ploutz-Snyder, L., Reduced Physical Performance Capabilities Due to Reduced Aerobic Capacity: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2015.

    Google Scholar 

  • Farrugia, G. and Balzan, R., Oxidative stress and programmed cell death in yeast, Front. Oncol., 2012, vol. 2, no. 64, pp. 1–21.

    Google Scholar 

  • Flynn-Evans, E., Gregory, K., Arsintescu, L., et al., Risk of Performance Decrements and Adverse Health Outcomes Resulting from Sleep Loss, Circadian Desynchronization, and Work Overload: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2016.

    Google Scholar 

  • Forbes, M.E., Paitsel, M., Bourland, J.D., et al., Earlydelayed, radiation-induced cognitive deficits in adult rats are heterogeneous and age-dependent, Radiat. Res., 2014, vol. 182, pp. 60–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giedzinski, E., Rola, R., Fike, J.R., et al., Efficient production of reactive oxygen species in neural precursor cells after exposure to 250 MeV protons, Radiat. Res., 2005, vol. 164, pp. 540–544.

    Article  CAS  PubMed  Google Scholar 

  • Goel, N., Biomarkers as predictors of resiliency and susceptibility to stress in space flight, 2015. https://taskbook. nasaprs.com/Publication/index.cfm?action=9937.

    Google Scholar 

  • Gomazkov, O.A., Neurogenesis as an adaptive function of the adult brain, Biol. Bull. Rev., 2014, vol. 4, no. 2, pp. 86–100.

    Article  Google Scholar 

  • Gomazkov, O.A., Neurogenesis as an organizing function of the adult brain: Is there enough evidence? Biol. Bull. Rev., 2016, vol. 6, no. 6, pp. 457–472.

    Article  Google Scholar 

  • Grabham, P., Sharma, P., Bigelow, A., et al., Two distinct types of the inhibition of vasculogenesis by different species of charged particles, Vascular Cell, 2013, vol. 5, pp. 16–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greene-Schloesser, D., Robbins, M.E., Peiffer, A.M., et al., Radiation-induced brain injury: a review, Front. Oncol., 2012, vol. 2, no. 73, pp. 1–18.

    Google Scholar 

  • Grigor’ev, A.I., Krasavin, E.A., and Ostrovskii, M.A., Assessment of the risk of the biological actions of galactic heavy ions to interplanetary flight, Neurosci. Behav. Physiol., 2015, vol. 45, no. 1, pp. 91–95.

    Article  Google Scholar 

  • Grigor’ev, Yu.G., Ushakov, I.B., Krasavin, E.A., et al., Kosmicheskaya radiobiologiya za 55 let (Space Radiobiology over 55 Years), Moscow: Ekonomika, 2013.

    Google Scholar 

  • Guida, P., Vazquez, M.E., and Otto, S., Cytotoxic effects of low and high-LET radiation on human neuronal progenitor cells: induction of apoptosis and TP53 gene expression, Radiat. Res., 2005, vol. 164, pp. 545–551.

    Article  CAS  PubMed  Google Scholar 

  • Haley, G.E., Villasana, L., Dayger, C., et al., Apolipoprotein E genotype-dependent paradoxical short-term effects of 56Fe irradiation on the brain, Intern. J. Radiat. Oncol. Biol. Phys., 2012, vol. 84, no. 3, pp. 793–799.

    Article  CAS  Google Scholar 

  • Haley, G.E., Yeiser, L., Olsen, R.H., et al., Early effects of whole-body 56Fe irradiation on hippocampal function in C57BL/6J mice, Radiat. Res., 2013, vol. 179, pp. 590–596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holden, K., Ezer, N., and Vos, G., Risk of Inadequate Human–Computer Interaction: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2013.

    Google Scholar 

  • Huang, Y.A., Ruiz, C.R., et al., Dual regulation of miRNA biogenesis generates target specificity in neurotrophin induced protein synthesis, Cell, 2012, vol. 148, no. 5, pp. 933–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huff, J., Carnell, L., Blattnig, S., et al., Risk of Radiation Carcinogenesis: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2016.

    Google Scholar 

  • Hwang, S.Y., Jung, J.S., and Kim, T.H., Ionizing radiation induces astrocyte gliosis through microglia activation, Neurobiol. Dis., 2006, vol. 3, pp. 457–467.

    Article  CAS  Google Scholar 

  • Information Needed to Make Radiation Protection Recommendations for Space Missions Beyond Low-Earth Orbit: Report 153, Bethesda: Natl. Counc. Radiat. Protect. Meas., 2006.

  • Jenrow, K.A., Brown, S.L., Lapanowski, K., et al., Selective inhibition of microglia-mediated neuroinflammation mitigates radiation-induced cognitive impairment, Radiat. Res., 2013, vol. 179, pp. 549–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, L.A., Olsen, R.H., Merkens, L.S., et al., Apolipoprotein E-low density lipoprotein receptor interaction affects spatial memory retention and brain ApoE levels in an isoform-dependent manner, Neurobiol. Dis., 2014, vol. 64, pp. 150–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kempf, S.J., Casciati, A., and Buratovic, S., The cognitive defects of neonatally irradiated mice are accompanied by changed synaptic plasticity, adult neurogenesis and neuroinflammation, Mol. Neurodegenetive, 2014, vol. 9, pp. 57–73.

    Article  CAS  Google Scholar 

  • Khan, S., Tariq, M., Perrott, J., et al., Distinctive microRNA expression signatures in proton-irradiated mice, Mol. Cell Biochem., 2013, vol. 382, pp. 225–235.

    Article  CAS  PubMed  Google Scholar 

  • Klandorf, H. and van Dyke, K., Oxidative and nitrosative stresses: their role in health and disease in man and birds, in Oxidative Stress, Rijeka: InTech, 2012, pp. 47–60.

    Google Scholar 

  • Krasavin, E.A., The “radiation barrier” for manned missions into deep space, 17th Meeting of the US/Russian Joint Working Group on Space Biomedical and Biological Sciences Research, Houston: Natl. Aeronaut. Space Admin., 2015.

    Google Scholar 

  • Krasavin, E.A., Radiobiological research at JINR’s accelerators, Phys.-Usp., 2016, vol. 59, no. 4, pp. 411–418.

    Article  CAS  Google Scholar 

  • Krasavin, E.A., Boreiko, A.V., Koltovaya, N.A., et al., Radiobiologicheskie issledovaniya v OIYaI (Radiobiological Research Work at the Joint Institute for Nuclear Research), Dubna: Ob”ed. Inst. Yad. Issled., 2015.

    Google Scholar 

  • Krushinskii, L.V., Biologicheskie osnovy rassudochnoi deyatel’nosti. Evolyutsionnyi i fiziologo-geneticheskii aspekty povedeniya (Biological Basis of Rational Activity: Evolutionary and Phyiological-Genetic Aspects of Behavior), Moscow: URSS Editorial, 2009.

    Google Scholar 

  • Kumar, M., Haridas, S., Trivedi, R., et al., Early cognitive changes due to whole body γ-irradiation: a behavioral and diffusion tensor imaging study in mice, Exp. Neurol., 2013, vol. 248, pp. 360–368.

    Article  PubMed  Google Scholar 

  • Kyrkanides, S., Moore, A. H., Olschowka, J.A., et al., Cyclooxygenase-2 modulates brain inflammationrelated gene expression in central nervous system radiation injury, Mol. Brain Res., 2002, vol. 104, no. 2, pp. 159–169.

    Article  CAS  PubMed  Google Scholar 

  • Landon, L.B., Vessey, W.B., and Barrett, J.D., Risk of Performance and Behavioral Health Decrements Due to Inadequate Cooperation, Coordination, Communication, and Psychosocial Adaptation within a Team: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2016.

    Google Scholar 

  • Lee, R.C., Feinbaum, R.L., and Ambros, V., The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, 1993, vol. 75, no. 5, pp. 843–854.

    Article  CAS  PubMed  Google Scholar 

  • Legeza, V.I., Ushakov, I.B., Grebenyuk, A.N., et al., Radiobiologiya, radiatsionnaya fiziologiya i meditsina: slovar’-spravochnik (Radiobiology, Radiation Physiology, and Medicine: Dictionary-Handbook), Voronezh: Nauchnaya Kniga, 2014.

    Google Scholar 

  • Limoli, C.L., Giedzinski, E., Rola, R., et al., Radiation response of neural precursor cells: linking cellular sensitivity to cell cycle checkpoints, apoptosis and oxidative stress, Radiat. Res., 2004, vol. 161, no. 1, pp. 17–27.

    Article  CAS  PubMed  Google Scholar 

  • Limoli, C.L., Giedzinski, E., Baure, J., et al., Redox changes induced in hippocampal precursor cells by heavy ion irradiation, Radiat. Environ. Biophys., 2007, vol. 46, no. 2, pp. 167–172.

    Article  CAS  PubMed  Google Scholar 

  • Lonart, G., Parris, B., Johnson, A.M., et al., Executive function in rats is impaired by low (20 cGy) doses of 1 GeV/u 56Fe particles, Radiat. Res., 2012, vol. 178, pp. 289–294.

    Article  CAS  PubMed  Google Scholar 

  • Lowe, X.R. and Wyrobek, A., Characterization of the early CNS stress biomarkers and profiles associated with neuropsychiatric diseases, Curr. Genomics, 2012, vol. 13, no. 6, pp. 489–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, L., Principles of Neurobiology, New York: Garland Science Group, 2016.

    Google Scholar 

  • Lyubimova, N. and Hopewell, J.W., Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiation-induced CNS injury, Br. J. Radiol., 2004, vol. 77, pp. 488–492.

    Article  CAS  PubMed  Google Scholar 

  • Maes, O.C., Chertkow, H.M., Wang, E., et al., MicroRNA: implications for Alzheimer disease and other human CNS disorders, Curr. Genomics, 2009, vol. 10, no. 3, pp. 154–168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier, S.F., Bi-directional immune-brain communication: implications for understanding stress, pain, and cognition, Brain Behav. Immunity, 2003, vol. 17, pp. 69–86.

    Article  CAS  Google Scholar 

  • Malashenkova, I.K., Krynskiy, S.A., Khailov, N.A., Kazanova, G.V., Velichkovsky, B.B., and Didkovsky, N.A., The role of cytokines in memory consolidation, Biol. Bull. Rev., 2016, vol. 6, no. 2, pp. 126–140.

    Article  Google Scholar 

  • Manda, K., Ueno, M., and Anzai, K., Memory impairment, oxidative damage and apoptosis induced by space radiation: ameliorative potential of α-lipoic acid, Behav. Brain Res., 2008, vol. 187, pp. 387–395.

    Article  CAS  PubMed  Google Scholar 

  • Mao, X.W., Favre, C.J., Fike, J.R., et al., High-LET radiation-induced response of microvessels in the hippocampus, Radiat. Res., 2010, vol. 173, no. 4, pp. 486–493.

    Article  CAS  PubMed  Google Scholar 

  • Marquette, C., Linard, C., Galonnier, M., et al., IL-1beta, TNFalpha and IL-6 induction in the rat brain after partial-body irradiation: role of vagal afferents, Int. J. Radiat. Biol., 2003, vol. 79, pp. 777–785.

    Article  CAS  PubMed  Google Scholar 

  • Marquez, J.J., Feary, M., Zumbado, J.R., and Billman, D., Risk of Inadequate Design of Human and Automation/ Robotic Integration: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2013.

    Google Scholar 

  • Marty, V., Vlkolinsky, R., Minassian, N., et al., Radiationinduced alterations in synaptic neurotransmission of dentate granule neurons depend on the dose and species of charged particles, Radiat. Res., 2014, vol. 182, pp. 653–665.

    Article  CAS  PubMed  Google Scholar 

  • Matveeva, M.I., Shtemberg, A.S., Timoshenko, G.N., Krasavin, E.A., Narkevich, V.B., Klodt, P.M., Kudrin, V.S., and Bazyan, A.S., The effects of irradiation by 12C carbon ions on monoamine exchange in several rat brain structures, Neurochem. J., 2013, vol. 7, no. 4, pp. 303–307.

    Article  CAS  Google Scholar 

  • Mellios, N. and Sur, M., The emerging role of microRNAs in schizophrenia and autism spectrum disorders, Front. Psychiatry, 2012. doi 10.3389/fpsyt.2012.00039

    Google Scholar 

  • Morganti, J.M., Jopson, T.D., Liu, S., et al., Cranial irradiation alters the brain’s microenvironment and permits CCR2+ macrophage infiltration, PLoS One, 2014, vol. 9, no. 4, p. e93650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • NASA-STD-3001: NASA Space Flight Human-System Standard, Vol. 1: Revision A: Crew Health, Washington, DC: Natl. Aeronaut. Space Admin., 2015a.

  • NASA-STD-3001: NASA Space Flight Human System Standard, Vol. 2: Human Factors, Habitability, and Environmental Health, Washington, DC: Natl. Aeronaut. Space Admin., 2015b.

  • Nelson, GA.., Simonsen, L., and Huff, J.L., Risk of Acute and Late Central Nervous System Effects from Radiation Exposure: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2016.

    Google Scholar 

  • Nizyaeva, N.V., Kulikova, G.V., Shchyogolev, A.I., and Zemskov, V.M., The role of microRNA in regulation of the body’s immune responses, Biol. Bull. Rev., 2016, vol. 6, no. 6, pp. 473–482.

    Article  Google Scholar 

  • Norcross, J.R., Conkin, J., Wessel, J.H., et al., Risk of Hypobaric Hypoxia from the Exploration Atmosphere: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2015.

    Google Scholar 

  • Obermeier B., Daneman R., and Ransohoff R.M. Development, maintenance and disruption of the bloodbrain barrier, Nat. Med., 2013, vol. 19, pp. 1584–1596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parihar, V.K. and Limoli C.L. Cranial irradiation compromises neuronal architecture in the hippocampus, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, pp. 12822–12827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parihar, V.K., Pasha J., Tran, K.K., et al., Persistent changes in neuronal structure and synaptic plasticity caused by proton irradiation, Brain Struct. Funct., 2014, vol. 220, no. 2, pp. 1161–1171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parihar, V.K., Allen, B.D., and Tran, K.K., Targeted overexpression of mitochondrial catalase prevents radiation-induced cognitive dysfunction, Antioxid. Redox Signal., 2015a, vol. 22, no. 1, pp. 78–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parihar, V.K., Allen, B., Tran, K.K., et al., What happens to your brain on the way to Mars, Sci. Adv., 2015b, vol. 1, p. e1400256.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parin, V.V. and Timofeev, N.N., The problem of artificial hypobiosis, Fiziol. Zh. SSSR im. I.M. Sechenova, 1969, vol. 55, no. 8, pp. 912–919.

    CAS  PubMed  Google Scholar 

  • Patel, Z., Huff, J., Saha, J., et al., Risk of Cardiovascular Disease and Other Degenerative Tissue Effects from Radiation Exposure: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2016.

    Google Scholar 

  • Peterson, S.M., Thompson, J.A., Ufkin, M.L., et al., Common features of microRNA target prediction tools, Front. Genet., 2014, vol. 5, no. 23, pp. 1–10.

    CAS  Google Scholar 

  • Platts, S.H., Stenger, M.B., Phillips, T.R., et al., Risk of Cardiac Rhythm Problems During Space Flight: Evidence Based Review, Houston: Natl. Aeronaut. Space Admin., 2010.

    Google Scholar 

  • Ploutz-Snyder, L., Ryder, J., English, K., et al., Risk of Impaired Performance Due to Reduced Muscle Mass, Strength, and Endurance: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2015.

    Google Scholar 

  • Poulose, S.M., Bielinski, D.F., Carrihill-Knoll, K., et al., Exposure to 16O-particle radiation causes aging-like decrements in rats through increased oxidative stress, inflammation and loss of autophagy, Radiat. Res., 2011, vol. 176, pp. 761–769.

    Article  CAS  PubMed  Google Scholar 

  • Raber, J., Novel images and novel locations of familiar images as sensitive translational cognitive tests in humans, Behav. Brain Res., 2015, vol. 285, pp. 53–59.

    Article  PubMed  Google Scholar 

  • Raber, J., Rola, R., LeFevour, A., et al., Radiation-induced cognitive impairments are associated with changes in indicators of hippocampal neurogenesis, Radiat. Res., 2004, vol. 162, no. 1, pp. 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Raber, J., Rudobeck, E., Campbell-Beachler, M., et al., 28Silicon radiation-induced enhancement of synaptic plasticity in the hippocampus of naive and cognitively tested mice, Radiat. Res., 2014, vol. 181, pp. 362–368.

    Article  CAS  PubMed  Google Scholar 

  • Rabin, B. M., Joseph, J. A., and Shukitt-Hale, B., A longitudinal study of operan tresponding in rats irradiated when 2 months-old, Radiat. Res., 2005, vol. 164, no. 4, pp. 552–555.

    Article  CAS  PubMed  Google Scholar 

  • Rabin, B.M., Shukitt-Hale, B., Joseph, J.A., et al., Relative effectiveness of different particles and energies in disrupting behavioral performance, Rad. Environ. Biophys., 2007, vol. 46, pp. 173–177.

    Article  CAS  Google Scholar 

  • Rabin, B.M., Joseph, J.A., Shukitt-Hale, B., et al., Interaction between age of irradiation and age of testing in the disruption of operant performance using a groundbased model for exposure to cosmic rays, Age, 2012, vol. 34, pp. 121–131.

    Article  PubMed  Google Scholar 

  • Rabin, B.M., Shukitt-Hale, B., Carrihill-Knoll, K.L., et al., Comparison of the effects of partial- or wholebody exposures to 16O particles on cognitive performance in rats, Radiat. Res., 2014, vol. 181, pp. 251–257.

    Article  CAS  PubMed  Google Scholar 

  • Rice, O.V., Grande, A.V., Dehktyar, N., et al., Long-term effects of irradiation with iron-56 particles on the nigrostriatal dopamine system, Radiat. Environ. Biophys., 2009, vol. 48, no. 2, pp. 215–225.

    Article  CAS  PubMed  Google Scholar 

  • Rivera, P.D., Shih, H.-Y., LeBlanc, J.A., et al., Acute and fractionated exposure to high-LET 56Fe HZE-particle radiation both result in similar long-term deficits in adult hippocampal neurogenesis, Radiat. Res., 2013, vol. 180, pp. 658–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rola, R., Sarkissian, V., Obenaus, A., et al., High-LET radiation induces inflammation and persistent changes in markers of hippocampal neurogenesis, Radiat. Res., 2005, vol. 164, no. 4, pp. 556–560.

    Article  CAS  PubMed  Google Scholar 

  • Rola, R., Zou, Y., Huang, T., et al., Lack of extracellular superoxide dismutase (EC-SOD) in the microenvironment impacts radiation-induced changes in neurogenesis, Free Radic. Biol. Med., 2007, vol. 42, pp. 1133–1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rola, R., Fishman, K., Baure, J., et al., Hippocampal neurogenesis and neuroinflammation after cranial irradiation with (56) Fe particles, Radiat. Res., 2008, vol. 169, no. 6, pp. 626–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothman, J.E., Schekman, R.W., and Südhof, C., The 2013 Nobel Prize in Physiology or Medicine for their discoveries of machinery regulating vesicle traffic, a major transport system in our cells. http://www.nobelprize.org/nobel_prizes/medicine/laureates/2013/press.html.

    Google Scholar 

  • Rudobeck, E., Nelson, G.A., Sokolova, I.V., et al., 28Silicon radiation impairs neuronal output in CA1 neurons of mouse ventral hippocampus without altering dendritic excitability, Radiat. Res., 2014, vol. 181, pp. 407–415.

    Article  CAS  PubMed  Google Scholar 

  • Ryabaya, O.O., Egorova, A.V., and Stepanova, E.V., The role of autophagy in mechanisms of tumor cell death, Biol. Bull. Rev., 2015, vol. 5, no. 6, pp. 579–588.

    Article  Google Scholar 

  • Sandor, A., Schuh, S.V., and Gore, B.F., Risk of Inadequate Critical Task Design: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2013.

    Google Scholar 

  • Sapetsky, A.O., Problems of radiation neurobiology of distant space flights, Materialy VII S”ezda po radiatsionnym issledovaniyam “Radiobiologiya, radioekologiya, radiatsionnaya bezopasnost’,” Moskva, 21–24 oktyabrya 2014 g. (Proc. VII Congr. on Radiation Studies “Radiobiology, Radioecology, and Radiation Safety,” Moscow, October 21–24, 2014), Moscow: Ross. Univ. Druzhby Narodov, 2014.

    Google Scholar 

  • Savolainen, S., Telkänranta, H., Junnila, J., et al., A novel set of behavioral indicators for measuring perception of food by cats, Vet. J., 2016, vol. 216, pp. 53–58.

    Article  PubMed  Google Scholar 

  • Scheuring, R.A., Holguin, N., Sibonga, J.D., et al., Risk of Intervertebral Disc Damage: Evidence Book, Houston: Natl. Aeronaut. Space Admin., 2008.

    Google Scholar 

  • Schnegg, C.I., Kooshki, M., Hsu, F.C., et al., PPAR delta prevents radiation-induced proinflammatory responses in microglia via transrepression of NF-kappa B and inhibition of the PK alpha/MEK1/2/ERK1/2/AP-1 pathway, Free Rad. Biol. Med., 2012, vol. 52, pp. 1734–1743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schratt, G., microRNAs at the synapse, Nat. Rev. Neurosci., 2009, vol. 10, pp. 842–849.

    Article  CAS  PubMed  Google Scholar 

  • Schuh, S., Barr, A., Connolly, J.H., et al., Risk of reduced safety and efficiency due to inadequately designed vehicle, environment, tools, or equipment, in Human Health and Performance Risks of Space Exploration Missions, McPhee, J.C. and Charles, J.B., Eds., Houston: Natl. Aeronaut. Space Admin., 2008, pp. 267–280.

    Google Scholar 

  • Schwarzman, A.L. and Sarantseva, S.V., Pathology of synapses in neurological diseases, Biol. Bull. Rev., 2014, vol. 4, no. 6, pp 515–526.

    Article  Google Scholar 

  • Shafirkin, A.V. and Grigor’ev, Yu.G., Mezhplanetnye i orbital’nye kosmicheskie polety (Interplanetary and Orbital Space Flights), Moscow: Ekonomika, 2009.

    Google Scholar 

  • Sharma, P., Guida, P., and Grabham, P., Effects of Fe particle irradiation on human endothelial barrier structure and function, Life Sci. Space Res., 2014, vol. 2, pp. 29–37.

    Article  Google Scholar 

  • Shirai, K., Mizui, T., Suzuki, Y., et al., X-irradiation changes dendritic spine morphology and density through reduction of cytoskeletal proteins in mature neurons, Radiat. Res., 2013, vol. 179, pp. 630–636.

    Article  CAS  PubMed  Google Scholar 

  • Shtemberg, A.S., Bazyan, A.S., Lebedeva-Georgievskaya, K.D., et al., Effects of exposure to highenergy protons on rat’s behavior: neurochemical mechanisms, Aviakosm. Ekol. Med., 2013, vol. 47, no. 6, pp. 54–60.

    CAS  Google Scholar 

  • Shtemberg, A.S. and Ushakov, I.B., The problem of studying the combined effects of spaceflight factors on functional reactions of the central nervous system, 65th Int. Astronautical Congr. 2014 (IAC 2014) “Our World Needs Space,” Paris: Int. Astronaut. Fed., 2014, pp. 176–181.

    Google Scholar 

  • Shtemberg, A.S., Kokhan, V.S., Kudrin, V.S., Matveeva, M.I., Lebedeva-Georgievskaya, K.D., Timoshenko, G.N., Molokanov, A.G., Krasavin, E.A., Narkevich, V.B., Klodt, P.M., and Bazyan, A.S., The effect of highenergy protons in the Bragg Peak on the behavior of rats and the exchange of monoamines in some brain structures, Neurochem. J., 2015, vol. 9, no. 1, pp. 66–72.

    Article  CAS  Google Scholar 

  • Shukitt-Hale, B., Casadesus, G., McEwen, J.J., et al., Spatial learning and memory deficits induced by exposure to iron-56-particle radiation, Radiat. Res., 2000, vol. 154, no. 1, pp. 28–33.

    Article  CAS  PubMed  Google Scholar 

  • Sibonga, J.D., Spector, E.R., Johnston, S.L., and Tarver, W.T., Evaluating bone loss in its astronauts, Aerosp. Med. Hum. Perform., 2015, vol. 86, no. 12, pp. 38–44.

    Article  PubMed  Google Scholar 

  • Slack, K.J., Williams, T.J., Schneiderman, J.S., et al., Risk of Adverse Cognitive or Behavioral Conditions and Psychiatric iDsorders: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2016.

    Google Scholar 

  • Smith, S.M., Zwart, S.R., and Heer, M., Risk Factor of Inadequate Nutrition: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2015.

    Google Scholar 

  • Sokolova, I.V., Schneider, C.J., Bezaire, M., et al., Proton radiation alters intrinsic and synaptic properties of CA1 pyramidal neurons of the hippocampus, Radiat. Res., 2015, vol. 183, pp. 208–218.

    Article  CAS  PubMed  Google Scholar 

  • Space Exploration Program Aurora, 2004. http://www.esa.int/Our_Activities/Human_Spaceflight/Exploration/The_European_Space_Exploration_Programme_Aurora.

  • Sridharan, M.D., Asaithamby, A., Blattnig, S.R., et al., Evaluating biomarkers to model cancer risk post cosmic ray exposure, Life Sci. Space Res., 2016, vol. 9, pp. 19–47.

    Article  Google Scholar 

  • St. Hilaire, M.A., Rahman, S.A., Barger, L.K., et al., Development and testing of biomarkers to determine individual astronauts’ vulnerabilities to behavioral health disruptions, Human Research Program Investigators Workshop, January 13–15, 2015, Galveston: Natl. Aeronaut. Space Admin., 2015.

    Google Scholar 

  • Sudakov, K.V., Emotions in the systemic organization of behavioral acts, Usp. Sovrem. Biol., 2011, vol. 131, no. 6, pp. 548–562.

    Google Scholar 

  • Sweet, T.B., Panda, N., Hein, A.M., et al., Central nervous system effects of whole-body proton irradiation, Radiat. Res., 2014, vol. 182, pp. 18–34.

    Article  CAS  PubMed  Google Scholar 

  • Talaev, V.Yu. and Plekhanova, M.V., Functional specialization of groups of dendritic cells, Usp. Sovrem. Biol., 2015, vol. 135, no. 6, pp. 575–589.

    Google Scholar 

  • Timofeev, N.N., Gipobioz i kriobioz. Proshloe, nastoyashchee i budushchee (Hypobiosis and Cryobiosis: Past, Present, and Future), Moscow: Inform-Znanie, 2005

    Google Scholar 

  • Tseng, B.P., Lan, M.L., Tran, K.K., et al., Characterizing low dose and dose rate effects in rodent and human neural stem cells exposed to proton and gamma irradiation, Redox Biol., 2013, vol. 19, no. 1, pp. 153–162.

    Article  CAS  Google Scholar 

  • Tseng, B.P., Giedzinski, E., Izadi, A., et al., Functional consequences of radiation-induced oxidative stress in cultured neural stem cells and the brain exposed to charged particle irradiation, Antioxid. Redox Signal., 2014, vol. 20, no. 9, pp. 1410–1422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ushakov, I.B. and Fedorov, V.P., Malye radiatsionnye vozdeistviya i mozg (Low Radiation Exposures and the Brain), Voronezh: Nauchnaya Kniga, 2015.

    Google Scholar 

  • Ushakov, I.B. and Shtemberg, A.S., Radiation physiology of higher nervous activity: results and perspectives, Neurosci. Behav. Physiol., 2012, vol. 42, no. 1, pp. 100–110.

    Article  Google Scholar 

  • Ushakov, I.B., Shtemberg, A.S., and Shafirkin, A.V., Reaktivnost’ i rezistentnost’ organizma mlekopitayushchikh (Reactivity and Resistance of the Mammal Organism), Moscow: Nauka, 2007.

    Google Scholar 

  • Villasana, L.E., Benice, T.S., and Raber, J., Long-term effects of (56) Fe irradiation on spatial memory of mice: role of sex and apolipoprotein E isoform, Int. J. Radiat. Oncol. Biol. Phys., 2011, vol. 80, pp. 567–573.

    Article  CAS  PubMed  Google Scholar 

  • Vlkolinsky, R., Titova, E., Krucker, T., et al., Exposure to (56) Fe-particle radiation accelerates electrophysiological alterations in the hippocampus of APP23 transgenic mice, Radiat. Res., 2010, vol. 173, pp. 342–352.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., Tanaka, K., Ji, B., et al., Total body 100-mGy X-irradiation does not induce Alzheimer’s disease-like pathogenesis or memory impairment in mice, Radiat. Res., 2013, vol. 55, no. 1, pp. 84–96.

    Article  CAS  Google Scholar 

  • Whitmore, M., McGuire, K., Margerum, S., et al., Risk of Incompatible Vehicle/Habitat Design: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2013.

    Google Scholar 

  • Wotring, V.E., Risk of Therapeutic Failure Due to Ineffectiveness of Medication: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2011.

    Google Scholar 

  • Yang, T.C. and Tobias, C.A., Effects of heavy ion radiation on the brain vascular system and embryonic development, Adv. Space Res., 1984, vol. 4, pp. 239–245.

    Article  CAS  PubMed  Google Scholar 

  • Yang, M., Kim, J.S., Song, M.S., et al., Dose-response and relative biological effectiveness of fast neutrons: induction of apoptosis and inhibition of neurogenesis in the hippocampus of adult mice, Int. J. Radiat. Biol., 2010, vol. 86, pp. 476–485.

    Article  CAS  PubMed  Google Scholar 

  • Yasuda, T., Oda, S., Yasuda, H., et al., Neurocytotoxic effects of iron-ions on the developing brain measured in vivo using medaka (Oryzias latipes), a vertebrate model, Int. J. Radiat. Biol., 2011, vol. 87, no. 9, pp. 915–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeiser, L.A., Villasana, L.E., and Raber, J., ApoE isoform modulates effects of cranial 56Fe irradiation on spatial learning and memory in the water maze, Behav. Brain Res., 2013, vol. 237, pp. 207–214.

    Article  CAS  PubMed  Google Scholar 

  • York, J., Blevins, N., Meling, D., et al., The biobehavioral and neuroimmune impact of low-dose ionizing radiation, Brain Behav. Immunity, 2012, vol. 26, pp. 218–227.

    Article  CAS  Google Scholar 

  • Yoshida, Y., Suzuki, Y., Al-Jahdari, W.S., et al., Evaluation of relative biological effectiveness of carbon ion beams in the cerebellum using the rat organotypic slice culture system, Radiat. Res., 2012, vol. 53, pp. 87–92.

    Article  Google Scholar 

  • Zancanaro, C., Biggiogera, M., and Malatesta, M., Mammalian Hibernation: Relevance to a Possible Human Hypometabolic State: Final Report, Frascati: Eur. Space Agency, 2004.

    Google Scholar 

  • Zeitlin, C., Hassler, D.M., Cucinotta, F.A., et al., Measurements of energetic particle radiation in transit to mars on the mars science laboratory, Science, 2013, vol. 340, no. 6136, pp. 1080–1084.

    Article  CAS  PubMed  Google Scholar 

  • Zerwekh, J.E., Odvina, C.V., Sibonga, J.D., et al., Risk of Renal Stone Formation: Evidence Report, Houston: Natl. Aeronaut. Space Admin., 2008.

    Google Scholar 

  • Zlokovic, B.V., Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders, Nat. Rev. Neurosci., 2011, vol. 12, pp. 723–738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Sapetsky.

Additional information

Original Russian Text © A.O. Sapetsky, I.B. Ushakov, N.V. Sapetsky, A.S. Shtemberg, N.S. Kositsin, N.N. Timofeev, 2017, published in Uspekhi Sovremennoi Biologii, 2017, Vol. 137, No. 2, pp. 165–194.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapetsky, A.O., Ushakov, I.B., Sapetsky, N.V. et al. Radiation neurobiology of long-term spaceflights. Biol Bull Rev 7, 443–468 (2017). https://doi.org/10.1134/S2079086417060068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086417060068

Keywords

Navigation