Skip to main content
Log in

Local population of Eritrichium caucasicum as an object of mathematical modelling. I. Life cycle graph and a nonautonomous matrix model

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

For the plant species, which is considered a short-lived perennial, we have composed a scale of ontogenetic stages and the life cycle graph (LCG) according to annual observations on permanent sample plots in an Alpine lichen heathland during the 2009–2014 period. The LCG that reflects seed reproduction has been reduced to the one that avoids the stage of soil seed bank, yet preserves the arcs of annual recruitment. The corresponding matrix model of stage-structured population dynamics has four stages: juvenile plants (including seedlings), vegetative, generative, and ‘terminally generative’ (the plants die after seed production). Model calibration reduces to directly calculating the rates of transition between stages and those of delays within stages from the data of only one time step, while keeping the two reproduction rates uncertain, yet confined to the quantitative bounds of observed recruitment. This has enabled us to determine a feasible range for the dominant eigenvalue of the model matrix, i.e., the quantitative bounds for the measure of how the local population adapts to its environment, at each of the five time steps, resulting in a formally nonautonomous model. To obtain “age-specific parameters” from a stage-classified model, we have applied the technique that constructs a virtual absorbing Markov chain and calculates its fundamental matrix. In a nonautonomous model, the estimates of life expectancy also depend on the time of observation (that fixes certain environmental conditions), and vary from two to nearly seven years. The estimates reveal how specifically short lives the short-lived perennial, while their range motivates the task to average the model matrices over the whole period of observation. The model indicates that Eritrichium caucasicum plants spend the most part of their life span in the adult vegetative stage under each of the environment conditions observed, thus revealing the space holder strategy by C. Körner (2003), or the delayed-development strategy by L.A. Zhukova (1995). We discuss the prospects of model experiments with a logically nonautonomous model to forecast the long-term dynamics of E. caucasicum, should a scenario of climate changes be given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adzhiev, R.K., Onipchenko, V.G., and Tekeev, D.K., Viability of buried seeds from alpine plant communities (Northwest Caucasus): results of a five-year experiment, Biol. Bull. Rev., 2013, vol. 3, no. 3, pp. 241–245.

    Article  Google Scholar 

  • Alpine Ecosystems in the Northwest Caucasus, Onipchenko, V.G., Ed., Dordrecht: Kluwer, 2004.

  • Ando, T., Li, C.-K., and Mathias, R., Geometric means, Linear Algebra Appl., 2004, vol. 385, pp. 305–334.

    Article  Google Scholar 

  • Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences, Chapin III, F.S. and Körner, C., Eds., Berlin: Springer-Verlag, 1995.

  • Artyushenko, Z.T., Atlas po opisatel’noi morphologii vysshikh rastenii: semya (Atlas on Descriptive Morphology of Higher Plants: A Seed), Leningrad: Nauka, 1990.

    Google Scholar 

  • Bender, M.H., Baskin, J.M., and Baskin, C.C., Age of maturity and life span in herbaceous, polycarpic perennials, Bot. Rev., 2000, vol. 66, no. 3, pp. 311–349.

    Article  Google Scholar 

  • Batchaeva, O.M., Regenerative dynamics and the horizontal pattern of alpine phytocenoses in Northwest Caucasian (exemplified by Teberda Nature Reserve), Extended Abstract of Cand. Sci. (Biol.) Dissertation, Stavropol: Stavropol State Univ. 2005.

    Google Scholar 

  • Bhatia, R. and Holbrook, J., Noncommutative geometric means, Math. Intell., 2006, vol. 28, pp. 32–39.

    Article  Google Scholar 

  • Caswell, H., Matrix Population Models: Construction, Analysis, and Interpretation, Sunderland, MA: Sinauer, 2001, 2nd ed.

    Google Scholar 

  • Chambers, J.C., Disturbance, life history strategies and seed fates in alpine herb field communities, Am. J. Bot., 1995, vol. 82, no. 3, pp. 421–433.

    Article  Google Scholar 

  • Cochran, M.E. and Ellner, S., Simple methods for calculating age-based life history parameters for stage-structured populations, Ecol. Monogr., 1992, vol. 62, no. 3, pp. 3455–3464.

    Article  Google Scholar 

  • Cushing, J.M. and Yicang, Z., The net reproductive value and stability in matrix population models, Nat. Resour. Model., 1994, vol. 8, no. 4, pp. 297–333.

    Article  Google Scholar 

  • Diemer, M., Population dynamics and spatial arrangement of Ranunculus glacialis L., an alpine perennial herb, in permanent plots, Vegetatio, 1992, vol. 103, no. 2, pp. 159–166.

    Google Scholar 

  • Egorov, A.V., Onipchenko, V.G., and Tekeev, D.K., Habitat ecological properties of alpine plant species in Teberda Reserve, Tr. Teberdinsk. Gos. Zapoved., 2012, no. 52.

    Google Scholar 

  • Erhlen, J. and Lehtila, K., How perennial are perennial plants? Oikos, 2002, vol. 98, pp. 308–322.

    Article  Google Scholar 

  • Fedorov, A.A., Kirpichnikov, M.A., and Artyushenko, Z.T., Atlas po opisatel’noi morfologii vysshikh rastenii: List (Atlas on the Descriptive Morphology of Higher Plants: Leaf), Moscow: Akad. Nauk SSSR, 1956.

    Google Scholar 

  • Fedorov, A.A., Kirpichnikov, M.A., and Artyushenko, Z.T., Atlas po opisatel’noi morfologii vysshikh rastenii: Stebel’ i koren’ (Atlas on the Descriptive Morphology of Higher Plants: Stem and Root), Moscow: Akad. Nauk SSSR, 1962.

    Google Scholar 

  • Fischlin, A., Midgley, G.F., Price, J.T., et al., Ecosystems, their properties, goods, and services, in Climate Change 2007: Working Group II: Impacts, Adaptation and Vulnerability, Cambridge: Cambridge Univ. Press, 2007, pp. 211–272.

    Google Scholar 

  • GarcÍa, M.B., Pico, F.X., and Ehrlen, J., Life span correlates with population dynamics in perennial herbaceous plants, Am. J. Bot., 2008, vol. 95, no. 2, pp. 258–262.

    Article  PubMed  Google Scholar 

  • Grime, J.P., Plant Strategies, Vegetation Processes, and Ecosystem Properties, Chichester: Wiley, 2001, 2nd ed.

    Google Scholar 

  • Grossgeim, A.A., Analysis of the Caucasus flora, Tr. Bot. Inst. Az. Fil., Akad. Nauk SSSR, 1936, no. 1.

    Google Scholar 

  • Grossgeim, A.A., Rastitel’nyi pokrov Kavkaza (Vegetative Cover of the Caucasus), Moscow: Mosk. O-vo Ispyt. Prirod., 1948.

    Google Scholar 

  • Harper, J.L. and White, J., The demography of plants, Annu. Rev. Ecol. Syst., 1974, vol. 5, pp. 419–463.

    Article  Google Scholar 

  • Keller, R. and Vittoz, P., Clonal growth and demography of a hemicryptophyte alpine plant: Leontopodium alpinum Cassini, Alp. Bot., 2014, vol. 125, no. 1, pp. 31–40.

    Article  Google Scholar 

  • Kemeny, J.G. and Snell, J.L., Finite Markov Chains, Berlin: Springer-Verlag, 1976.

    Google Scholar 

  • Kipkeev, A.M., Onipchenko, V.G., Tekeev, D.K., Erkenova, M.A., and Salpagarova, F.S., Age of maturity in alpine herbaceous perennials in the North-West Caucasus, Biol. Bull. Rev., 2015, vol. 5, no. 5, pp. 505–511.

    Article  Google Scholar 

  • Körner, C., Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems, Berlin: Springer-Verlag, 1999.

    Book  Google Scholar 

  • Körner, C., Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems, Berlin: Springer-Verlag, 2003, 2nd ed.

    Book  Google Scholar 

  • Kurashev, A.S. and Onipchenko, V.G., Antekologiya al’piiskikh rastenii Severo-Zapadnogo Kavkaza (Anthecology of Alpine Plants in the Northwestern Caucasus), Kislovodsk: MIL, 2013.

    Google Scholar 

  • Li, C.-K. and Schneider, H., Application of Perron–Frobenius theory to population dynamics, J. Math. Biol., 2002, vol. 44, pp. 450–462.

    Article  PubMed  Google Scholar 

  • Logofet, D.O., Convexity in projection matrices: projection to a calibration problem, Ecol. Model., 2008, vol. 216, no. 2, pp. 217–228.

    Article  Google Scholar 

  • Logofet, D.O., Svirezhev’s substitution principle and matrix models for dynamics of populations with complex structures, Zh. Obshch. Biol., 2010, vol. 71, no. 1, pp. 30–40.

    CAS  PubMed  Google Scholar 

  • Logofet, D.O., Complexity in matrix population models: polyvariant ontogeny and reproductive uncertainty, Ecol. Complexity, 2013a, vol. 15, pp. 43–51.

    Article  Google Scholar 

  • Logofet, D.O., Projection matrices in variable environments: λ1 in theory and practice, Ecol. Model., 2013b, vol. 251, pp. 307–311.

    Google Scholar 

  • Logofet, D.O., Projection matrices revisited: a potentialgrowth indicator and the merit of indication, J. Math. Sci., 2013c, vol. 193, no. 5, pp. 671–686.

    Article  Google Scholar 

  • Logofet, D.O. and Belova, I.N., Nonnegative matrices as a tool to model population dynamics: classical models and contemporary expansions, J. Math. Sci., 2008, vol. 155, no. 6, pp. 894–907.

    Article  Google Scholar 

  • Logofet, D.O., Golubyatnikov, L.L., and Denisenko, E.A., Inhomogeneous Markov models for succession of plant communities: new perspectives of an old paradigm, Biol. Bull., 1997, vol. 24, no. 5, pp. 506–514.

    Google Scholar 

  • Logofet, D.O., Denisenko, E.A., and Golubyatnikov, L.L., Successions in forest-steppe under conditions of climate change: a model approach, Zh. Obshch. Biol., 2005, vol. 66, no. 2, pp. 136–145.

    CAS  PubMed  Google Scholar 

  • Logofet, D.O., Ulanova, N.G., and Belova, I.N., Two paradigms in mathematical population biology: an attempt at synthesis, Biol. Bull. Rev., 2012, vol. 2, no. 1, pp. 89–104.

    Article  Google Scholar 

  • Logofet, D.O., Ulanova, N.G., and Belova, I.N., Adaptation on the ground and beneath: does the local population maximize its λ1? Ecol. Complexity, 2014, vol. 20, pp. 176–184.

    Article  Google Scholar 

  • Logofet, D.O., Evstigneev, O.I., Aleinikov, A.A., and Morozova, A.O., Succession caused by beaver (Castor fiber L.) life activity: II. A refined Markov model, Biol. Bull. Rev., 2016a, vol. 6, no. 1, pp. 39–56.

    Article  Google Scholar 

  • Logofet, D.O., Ulanova, N.G., and Belova, I.N., Polyvariant ontogeny in woodreeds: novel models and new discoveries, Biol. Bull. Rev., 2016b, vol. 6, no. 5, pp. 365–385.

    Article  Google Scholar 

  • Markov, M.V., Populyatsionnaya biologiya rastenii (Population Biology of the Plants), Moscow: KMK, 2012.

    Google Scholar 

  • Nakhutsrishvili, G.S. and Gamtsemlidze Z.G. Zhizn’ rastenii v extremal’nykh usloviyakh vysokogorii: na primere Tsentralnogo Kavkasa (Plant Life in Extreme High Altitude Conditions by Example of the Central Caucasus), Leningrad: Nauka, 1984.

    Google Scholar 

  • Onipchenko, V.G., Experimental study of phytocenosis structures in alpine lichen heaths, Dokl. Mosk. O-va. Ispyt. Prir., Zool. Bot., 1984, pp. 78–81.

    Google Scholar 

  • Onipchenko, V.G., Structure, phytomass, and productivity of alpine lichen heaths, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1985, vol. 90, no. 1, pp. 59–66.

    Google Scholar 

  • Onipchenko, V.G., Alpine Vegetation of the Teberda Reserve, the Northwestern Caucasus, Zurich: Veroff des Geobot. Inst. Stiftung Rübel, 2002.

    Google Scholar 

  • Onipchenko, V.G. and Komarov, A.S., Population dynamics and life history features of three alpine plant species in the Northwest Caucasus, Zh. Obshch. Biol., 1997, vol. 58, no. 6, pp. 64–75.

    Google Scholar 

  • Onipchenko, V.G. and Onishchenko, V.V., Climatic features of alpine heaths, in Sostav i struktura biogeotsenozov al’piiskikh pustoshei (Composition and Structure of Biogeocenoses of Alpine Heaths), Moscow: Mosk. Gos. Univ., 1986, pp. 9–24.

    Google Scholar 

  • Onipchenko, V.G., Egorov, F.V., Glukhova, E.M., and Khanina, L.G., Ecotopic confinement of highaltitude plants of the Teberda Reserve: analyzing a geobotanical database, Tr. Teberdinsk. Gos. Zapoved., 1999, no. 15, pp. 166–206.

    Google Scholar 

  • Pauli, H., Gottfried, M., Dirnbock, T., Dullinger, S., and Grabherr, G., Assessing the long-term dynamics of endemic plants at summit habitats, in Alpine Biodiversity in Europe, Nagy, L., Grabherr, G., Körner, C., and Thompson, D.B.A., Eds., Berlin: Springer-Verlag, 2003, pp. 195–207.

    Chapter  Google Scholar 

  • Pierce, S., Negreiros, D., Cerabolini, B.E.L., et al., A global view and measurement of plant ecological strategies from leaf economics and size traits, Funct. Ecol., 2017 (in press).

    Google Scholar 

  • Popov, M.G., Family Boraginaceae, in Flora SSSR (Flora of the Soviet Union), Shishkin, B.K., Ed., Moscow: Akad. Nauk SSSR, 1953, vol. 19.

    Google Scholar 

  • Popova, A.S., The biology of short-lived alpine plants (exemplified with the Teberda Reserve). MSc Dissertation, Pushchino: Pushch. Gos. Univ., 2010.

    Google Scholar 

  • Rabonov, T.A., Duration of the virgin period in the life span of herbaceous perennials in natural conenoses, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1946, vol. 51, no. 2, pp. 41–48.

    Google Scholar 

  • Rabonov, T.A., Basic issues and methods to study the life cycle of perennial herbaceous plants and their population structures, Nauchno-Metod. Zap. Glav. Uprav. Zapoved. RSFSR, 1949, no. 12, pp. 91–98.

    Google Scholar 

  • Rabonov, T.A., Life cycle of perennial herbaceous plants in meadow phytocoenoses, Tr. Bot. Inst., Akad. Nauk SSSR, Ser. 3. Geobot., 1950a, no. 6, pp. 7–204.

    Google Scholar 

  • Rabonov, T.A., Research issues of the population structure aimed for the purposes of plant ecology, Probl. Bot., 1950b, no. 1, pp. 465–483.

    Google Scholar 

  • Ramenskii, L.G., The basic principles, basic concepts, and terms of the industrial typology of lands, geobotany, and ecology, Sov. Bot., 1935, no. 4, pp. 25–40.

    Google Scholar 

  • Salguero-Gomez, R. and Casper, B.B., Keeping plant shrinkage in the demographic loop, J. Ecol., 2010, vol. 98, no. 2, pp. 312–323.

    Article  Google Scholar 

  • Semenova, G.V. and Onipchenko, V.G., Soil seed bank of an alpine lichen heath in the Northwestern Caucasus: species richness, Oecol. Mo., 1996, vol. 5, no. 2, pp. 83–86.

    Google Scholar 

  • Shidakov, I.I. and Onipchenko, V.G., Comparative analysis of alpine plant leaf traits in the Teberda Reserve, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 2007, vol. 112, no. 4, pp. 42–50.

    Google Scholar 

  • Silvertown, J., Franco, M., Pisanty, I., and Mendoza, A., Comparative plant demography—relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials, J. Ecol., 1993, vol. 81, pp. 465–476.

    Article  Google Scholar 

  • Sizov, I.E., Onipchenko, V.G., and Komarov, A.S., Life span indirect evaluation of three alpine perennial plants, Oecol. Mo., 1999, vol. 8, pp. 21–26.

    Google Scholar 

  • Sovremennye podkhody k opisaniyu struktury rasteniya (Modern Approaches to Description of the Plant Structure), Savinykh, N.P. and Bobtrovykh, Yu.A., Eds., Kirov: Loban’, 2008.

  • Tsenopopulyatsii rastenii: osnovnye ponyatiya i struktura (Plant Cenopopulations: General Terms and Structure), Uranov, A.A. and Serebryakova, T.I., Eds., Moscow: Nauka, 1976.

  • Tsepkova, N.L., The syntaxonomy of pasture communities in high altitude meadows of the Central Caucasus, Tr. Vysokogorn. Geofiz. Inst., 1987, no. 68, pp. 82–96.

    Google Scholar 

  • Tuljapurkar, S.D., Population Dynamics in Variable Environments, New York: Springer-Verlag, 1990.

    Book  Google Scholar 

  • Ulanova, N.G., Klochkova, I.N., and Demidova, A.N., Modeling the population dynamics of Calamagrostis epigeios (L.) Roth during reforestation in a mixed spruce forest clear-cut, Sib. Bot. Vestn., 2007, vol. 2, no. 2, pp. 91–96. http://www.csbg.nsc.ru/uploads/journal.csbg.ru/pdfs/i3.pdf.

    Google Scholar 

  • Uranov, A.A., Age spectrum of phytocoenopopulations as a function of time and energetic wave processes, Biol. Nauki, 1975, no. 2, pp. 7–34.

    Google Scholar 

  • Vorob’eva, F.M. and Onipchenko, V.G., Vascular plants of Teberda Reserve, in Flora i fauna zapovednikov (Flora and Fauna of Nature Reserves), Gubanov, I.A., Ed., Tula: Grif i K, 2001, no. 99, pp. 1–100.

    Google Scholar 

  • Voronina, I.N., Onipchenko, V.G., and Ignat’eva, O.V., Components of the biological cycle in alpine lichen heaths of Northwest Caucasus, Pochvovedenie, 1986, no. 1, pp. 29–37.

    Google Scholar 

  • Zernov, A.S., Flora Severo-Zapadnogo Kavkaza (Flora of the Northwestern Caucasus), Moscow: KMK, 2006.

    Google Scholar 

  • Zhmylev, P.Yu., Alekseev, Yu.E., Karpukhina, E.A., and Balandin, S.A., Biomorfologiya rastenii: illustrirovannyi slovar’ (The Plant Biomorphology: Illustrated Dictionary), Tula: Grif i K, 2005, 2nd ed.

    Google Scholar 

  • Zhukova, L.A., Polyvariance of the meadow plants, in Zhiznennye formy v ekologii i sistematike rastenii (Life Forms in Ecology and Plant Systematics), Moscow: Mosk. Gos. Pedagog. Inst., 1986, pp. 104–114.

    Google Scholar 

  • Zhukova, L.A., Populyatsionnaya zhizn’ lugovykh rastenii (Population Life of the Meadow Plants), Yoshkar-Ola: Lanar, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Logofet.

Additional information

Published in Rassian in Zhurnal Obshchei Biologii, 2016, Vol. 77, No. 2, pp. 106–121.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logofet, D.O., Belova, I.N., Kazantseva, E.S. et al. Local population of Eritrichium caucasicum as an object of mathematical modelling. I. Life cycle graph and a nonautonomous matrix model. Biol Bull Rev 7, 415–427 (2017). https://doi.org/10.1134/S207908641705005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207908641705005X

Navigation