Skip to main content
Log in

The genetic basis of the formation, structure, and functions of the vitreous body

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Analysis of the processes and genetic bases of the formation of the vitreous body proved the involvement of a large number of genes and factors that ensure its development, structure, and functioning. The vitreous body of adult individuals was revealed to have more than a thousand proteins. The main part of the vitreous body is represented by collagens of several types and hyaluronan. The main processes in the course of development are the formation and elimination of the system of hyaloid vessels of the vitreous body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balazs, E.A., Physiology of the Vitreous Body: Importance of the Vitreous Body in Retina Surgery with Special Emphasis on Reoperation, Schepens, C.L., Ed., St. Louis: C.V. Mosby, 1960, pp. 29–48.

  • Bishop, P.N., Structural macromolecules and supramolecular organization of the vitreous gel, Progr. Retinal Eye Res., 2000, vol. 19, pp. 323–344.

    Article  CAS  Google Scholar 

  • Comper, W.D. and Laurent, T.C., Physiological functions of connective tissue polysaccharides, Physiol. Rev., 1978, vol. 58, pp. 255–315.

    CAS  PubMed  Google Scholar 

  • Duh, E.J., Yao, Y.G., Dagli, M., and Goldberg, M.F., Persistence of fetal vasculature in a patient with Knobloch syndrome: potential role for endostatin in fetal remodeling of the eye, Ophthalmology, 2004, vol. 111, pp. 1885–1888.

    PubMed  Google Scholar 

  • Faulborn, J. and Bowald, S., Microproliferations in proliferative diabetic retinopathy and their relation to the vitreous, Graefe’s Arch. Clin. Exp. Ophthalmol., 1985, vol. 223, pp. 130–138.

    Article  CAS  Google Scholar 

  • Gloor, B.P., Autoradiographische untersuchungen mit 3HThymidin zur entwicklung der glaskorperrinden-zellen, Ophthalmologica, 1972, vol. 165, p. 175.

    Article  Google Scholar 

  • Goff, M.M.L. and Bishop, P.N., Adult vitreous structure and postnatal changes, Eye, 2008, vol. 22, pp. 1214–1222.

    Article  PubMed  Google Scholar 

  • Halfner, W., Dong, S., Schurer, D., et al., Embryonic synthesis of the inner limiting membrane and vitreous body, Invest. Ophthalmol. Vis. Sci., 2005, vol. 46, pp. 2202–2209.

    Article  Google Scholar 

  • Jack, R.L., Regression of the hyaloid artery system: an ultrastructural analysis, Am. J. Ophthalmol., 1972, vol. 74, pp. 261–272.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, C., Sivakumar, V., and Foulds, W.S., Early response of neurons and glial cells to hypoxia in retina, Invest. Ophthalmol. Vis. Sci., 2006, vol. 47, pp. 1126–1141.

    Article  PubMed  Google Scholar 

  • Khlebnikova, O.V. and Dadali, E.L., Nasledstvennaya patologiya organa zreniya (Inherited Pathology of Vision Organ), Ginter, E.K., Ed., Moscow: Avtorskaya Akademiya, 2014.

  • Kita, T., Hata, Y., Arita, R., et al., Role of TGF-ß in proliferative vitreoretinal diseases and ROCK as a therapeutic target, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 45, pp. 17504–17509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohno, R., Hata, Y., Kawahara, S., et al., Possible contribution of hyalocytes to idiopathic epiretinal membrane formation and its contraction, Br. J. Ophthalmol., 2009, vol. 93, pp. 1020–1026.

    Article  PubMed  Google Scholar 

  • Lamba, P.A. and Shukla, K.M., Experimental asteroid hyalopathy, Br. J. Ophthalmol., 1971, vol. 55, pp. 279–283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacRae, M.E., Patel, D.V., Richards, A.J., et al., Type 1 Stickler syndrome: a histological and ultrastructural study of an untreated globe, Eye, 2006, vol. 20, pp. 1061–1067.

    Article  CAS  PubMed  Google Scholar 

  • Mayne, R., Connective tissue and its heritable disorders: molecular, genetic, and medical aspects, in The Eye, Royce, P.M. and Steinmann, B., Eds., New York: Wiley, 2001, pp. 131–141.

    Google Scholar 

  • Mayne, R., Brewton, R.G., and Ren, Z.H., Vitreous body and zonular apparatus, in Biochemistry of the Eye, Harding, J.J., Ed., London: Chapman and Hall, 1997, pp. 135–143.

    Google Scholar 

  • Mglinets, V.A., Development of preplacodal placode area and sensory organs, Med. Genet., 2009, vol. 8, no. 5, pp. 3–10.

    Google Scholar 

  • Mglinets, V.A., Genetics of lens development, Russ. J. Genet., 2015, vol. 51, no. 10, pp. 939–948.

    Article  CAS  Google Scholar 

  • Modanlou, H.D., Gharraee, Z., Hasan, H.D., et al., Ontogeny of VEGF, IGF-I, and GHin neonatal rat serum, vitreous fluid, and retina from birth to weaning, Invest. Ophthalmol. Vis. Sci., 2006, vol. 47, pp. 738–744.

    Article  PubMed  Google Scholar 

  • Murthy, K.R., Goel, R., Subbannayya, Y., et al., Proteomic analysis of human vitreous humor, Clin. Proteomics, 2014, vol. 11, p. 29.

    Google Scholar 

  • Newsome, D.A., Linsemayer, T.F., and Trelstad, R.J., Vitreous body collagen. Evidence for a dual origin from the neural retina and hyalocytes, J. Cell Biol., 1976, vol. 71, pp. 59–67.

    Article  CAS  PubMed  Google Scholar 

  • Osterlin, S.E., The synthesis of hyaluronic acid in the vitreous: III. In vivo metabolism in the owl monkey, Exp. Eye Res., 1968, vol. 7, p. 524.

    Article  CAS  PubMed  Google Scholar 

  • Robitaille, J.M., Wallace, K., Zheng, B., et al., Phenotypic overlap of familial exudative vitreoretinopathy (FEVR) with persistent fetal vasculature (PFV) caused by FZD4 mutations in two distinct pedigrees, Ophthalmic Genet., 2009, vol. 30, no. 1, pp. 23–30.

    Article  CAS  PubMed  Google Scholar 

  • Sang, D.N., Embryology of the vitreous. Congenital and developmental abnormalities, Bull. Soc. Belge Ophtalmol., 1987, vol. 223, part 1, pp. 11–35.

    PubMed  Google Scholar 

  • Sebag, J., Anomalous PVD—a unifying concept in vitreoretinal diseases, Graefe’s Arch. Clin. Exp. Ophthalmol., 2004, vol. 242, pp. 690–698.

    Article  CAS  Google Scholar 

  • Sebag, J., Vital dyes in vitreoretinal surgery, in See the Invisible: The Quest of Imaging Vitreous, Meyer, C.H., Ed., Basel: Karger, 2008, vol. 42, pp. 5–28.

    CAS  Google Scholar 

  • Sebag, J., Vitreous anatomy, aging, and anomalous posterior vitreous detachment, in Encyclopedia of the Eye, Dart, D.A., Ed., Oxford: Academic, 2010, vol. 4, pp. 307–315.

    Article  Google Scholar 

  • Sebag, J., Wang, M.Y., Nguyen, D., and Sadun, A.A., Vitreopapillary adhesion in macular diseases, Trans. Am. Ophthalmol. Soc., 2009, vol. 107, pp. 35–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simó-Servat, O., Hernández, C., and Simó, R., Usefulness of the vitreous fluid analysis in the translational research of diabetic retinopathy, Mediators Inflamm., 2012, vol. 2012, p. 11.

    Article  Google Scholar 

  • Skeie, J.M., Tsang, S.H., and Mahajan, V.B., Evisceration of mouse vitreous and retina for proteomic analyses, J. Vis. Exp., 2011, vol. 3, no. 50, p. e2795.

    Google Scholar 

  • Snead, M.P. and Richards, A.J., Hereditary vitreo-retinopathies, in Vitreous in Health and Disease, Sebag, J., Ed., New York: Springer-Verlag, 2014, part 1, pp. 21–40.

    Google Scholar 

  • Snead, M.P. and Yates, J.R.W., Clinical and molecular genetics of Stickler syndrome, J. Med. Genet., 1999, vol. 36, pp. 53–59.

    Google Scholar 

  • Streeten, B.A., Disorders of the vitreous, in Pathobiology of Ocular Disease a Dynamic Approach, Garner, A. and Klintworth, G.K., Eds., New York: Marcel Dekker, 1982, part B, pp. 138–419.

    Google Scholar 

  • Tonga, Z., Yang, Z., Patela, S., et al., Promoter polymorphism of the erythropoietin gene in severe diabetic eye and kidney complications, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 19, pp. 6998–7003.

    Article  Google Scholar 

  • Vu, C.D., Brown, J. Jr., Korkko, J., et al., Posterior chorioretinal atrophy and vitreous phenotype in a family with Stickler syndrome from a mutation in the COL2A1 gene, Ophthalmology, 2003, vol. 110, no. 1, pp. 70–77.

    Article  PubMed  Google Scholar 

  • Yee, K.M.P., Feener, E.P., Gao, B., et al., Vitreous cytokines and regression of fetal hyaloid vasculature, in Vitreous in Health and Disease, Sebag, J., Ed., New York: Springer-Verlag, 2014, part 1, pp. 41–55.

    Google Scholar 

  • Young, K.A., Berry, M.L., Mahaffey, C.L., et al., Fierce: a new mouse deletion of Nr2e1; violent behaviour and ocular abnormalities are background-dependent, Behav. Brain Res., 2002, vol. 132, no. 2, pp. 145–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou, X., Dong, F., and Zhang, S., Transthyretin Ala36Pro mutation in a Chinese pedigree of familial transthyretin amyloidosis with elevated vitreous and serum vascular endothelial growth factor, Exp. Eye Res., 2013, vol. 110, pp. 44–49.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Mglinets.

Additional information

Original Russian Text © V.A. Mglinets, 2016, published in Uspekhi Sovremennoi Biologii, 2016, Vol. 136, No. 2, pp. 143–155.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mglinets, V.A. The genetic basis of the formation, structure, and functions of the vitreous body. Biol Bull Rev 6, 519–529 (2016). https://doi.org/10.1134/S2079086416060049

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086416060049

Keywords

Navigation