Skip to main content
Log in

Neurogenesis as an organizing function of the adult brain: Is there enough evidence?

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

A half century of studying the neurogenesis of the adult brain has produced much evidence for an endogenous conversion of neural stem cells. Yet the idea receives increasing criticism, in addition to the many positive comments. Does neurogenesis proceed at a rate sufficiently high for its functional significance? Are new cells capable of integrating into proper brain regions in order to perform a reparative role? How long do new neurons persist in the integration sites, and how significant is their role in the neuronal circuit structure? An organizing function is hypothesized for endogenous adult brain neurogenesis on the basis of current information. One of the main arguments for the hypothesis is the multiplicity of key physiological processes functionally associated with the involvement of new neurons and glial cells: learning, memory, adaptive behavior, protective stress responses, reproductive function, changes in the state of mind, injuries, ischemic and neurodegenerative disorders, etc. The adjustable reprogramming of neuronal precursors and the reparative role of new cells are analyzed. The organizing role of neurogenesis is considered a justified complex process that is important for the function of the adult brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Addington, C.P., Roussas, A., Dutta, D., et al., Endogenous repair signaling after brain injury and complementary bioengineering approaches to enhance neural regeneration, Biomark Insights, 2015, vol. 10, suppl. 1, pp. 43–60.

    PubMed  PubMed Central  Google Scholar 

  • Aimone, J.B., Wiles, J., and Gage, F.H., Computational influence of adult neurogenesis on memory encoding, Neuron, 2009, vol. 61, no. 2, pp. 187–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appleby, P.A. and Wiskott, L., Additive neurogenesis as a strategy for avoiding interference in a sparsely-coding dentate gyrus, Network, 2009, vol. 20, no. 3, pp. 137–161.

    Article  PubMed  Google Scholar 

  • Avram, S., Borcan, F., Avram, L.C., et al., QSAR approaches applied to antidepressants induced neurogenesis— in vivo and in silico applications, Mini-Rev. Med. Chem., 2015, vol. 16, pp. 230–240.

    Article  PubMed  Google Scholar 

  • Benner, E.J., Luciano, D., Jo, R., et al., Protective astrogenesis from the SVZ niche after injury is controlled by Notch modulator Thbs4, Nature, 2013, vol. 497, pp. 369–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett, L., Yang, M., Enikolopov, G., and Iacovitti, L., Circumventricular organs: a novel site of neural stem cells in the adult brain, Mol. Cell. Neurosci., 2009, vol. 41, no. 3, pp. 337–347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boldrini, M., Underwood, M.D., Hen, R., et al., Antidepressants increase neural progenitor cells in the human hippocampus, Neuropsychopharmacology, 2009, vol. 34, pp. 2376–2389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brezun, J.M. and Daszuta, A., Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats, Neuroscience, 1999, vol. 89, pp. 999–1002.

    Article  CAS  PubMed  Google Scholar 

  • Butti, E., Bacigaluppi, M., Rossi, S., et al., Subventricular zone neural progenitors protect striatal neurons from glutamatergic excitotoxicity, Brain, 2012, vol. 135, part 11, pp. 3320–3335.

    Article  PubMed  Google Scholar 

  • Cameron, H.A. and McKay, R.D., Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus, J. Comp. Neurol., 2001, vol. 435, no. 4, pp. 406–417.

    Article  CAS  PubMed  Google Scholar 

  • Cheyne, J.E., Grant, L., Butler-Munro, C., et al., Synaptic integration of newly generated neurons in rat dissociated hippocampal cultures, Mol. Cell Neurosci., 2011, vol. 47, no. 3, pp. 203–214.

    Article  CAS  PubMed  Google Scholar 

  • Clelland, C.D., Choi, M., Romberg, C., et al., A functional role for adult hippocampal neurogenesis in spatial pattern separation, Science, 2009, vol. 325, pp. 210–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colucci-D’Amato, L., Bonavita, V., and di Porzio, U., The end of the central dogma of neurobiology: stem cells and neurogenesis in adult CNS, Neurol. Sci., 2006, vol. 27, no. 4, pp. 266–270.

    Article  PubMed  Google Scholar 

  • Couillard-Despres, S. and Aigner, L., In vivo imaging of adult neurogenesis, Eur. J. Neurosci., 2011, vol. 33, pp. 1037–1044.

    Article  PubMed  Google Scholar 

  • David, D.J., Samuels, B.A., Rainer, Q., et al., Neurogenesis- dependent and-independent effects of fluoxetine in an animal model of anxiety/depression, Neuron, 2009, vol. 62, pp. 479–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, W., Aimone, J.B., and Gage, F.H., New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci., 2010, vol. 11, no. 5, pp. 339–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshpande, A., Bergami, M., Ghanem, A., et al., Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb, Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, pp. 1152–1161.

    Article  Google Scholar 

  • Dranovsky, A. and Leonardo, E.D., Is there a role for young hippocampal neurons in adaptation to stress? Behav. Brain Res., 2012, vol. 227, no. 2, pp. 371–375.

    Article  PubMed  Google Scholar 

  • Eisch, A.J., Cameron, H.A., Encinas, J.M., et al., Adult neurogenesis, mental health, and mental illness: hope or hype? J. Neurosci., 2008, vol. 28, no. 46, pp. 11785–11791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enikolopov, G., Overstreet-Wadiche, L., and Ge, S., Viral and transgenic reporters and genetic analysis of adult neurogenesis, Cold Spring Harbor Perspect. Biol., 2015, vol. 7, no. 8, pp. a018804. doi 10.1101/cshperspect.a018804

    Article  Google Scholar 

  • Gage, F.H. and Temple, S., Neural stem cells: generating and regenerating the brain, Neuron, 2013, vol. 80, no. 3, pp. 588–601.

    Article  CAS  PubMed  Google Scholar 

  • Gao, X., Enikolopov, G., and Chen, J., Moderate traumatic brain injury promotes proliferation of quiescent neural progenitors in the adult hippocampus, Exp. Neurol., 2009, vol. 219, no. 2, pp. 516–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge, S., Yang, C.H., Hsu, K.S., et al., A critical period for enhanced synaptic plasticity in newly generated neurons of the adult brain, Neuron, 2007, vol. 54, no. 4, pp. 559–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giachino, C. and Taylor, V., Notching up neural stem cell homogeneity in homeostasis and disease, Front. Neurosci., 2014, vol. 8, p. 32. doi 10.3389/fnins.2014.00032

    Google Scholar 

  • Gomazkov, O.A., Signaling molecules as regulators of neurogenesis in the adult brain, Neurochem. J., 2013, vol. 7, no. 4, pp. 241–255.

    Article  CAS  Google Scholar 

  • Gomazkov, O.A., Transformation of neural stem cells and reparative processes in the brain, Zh. Nevropatol. Psikhiatr. im. S.S. Korsakova, 2014, vol. 114, no. 8, pp. 4–12.

    CAS  Google Scholar 

  • Gould, E., How widespread is adult neurogenesis in mammals? Nat. Rev. Neurosci., 2007, vol. 8, no. 6, pp. 481–488.

    Article  CAS  PubMed  Google Scholar 

  • Ho, N.F., Hooker, J.M., Sahay, A., et al., In vivo imaging of adult human hippocampal neurogenesis: progress, pitfalls and promise, Mol. Psychiatry, 2013, vol. 18, no. 4, pp. 404–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman, E., Pickavance, L., Thippeswamy, T., et al., The male sex pheromone darcin stimulates hippocampal neurogenesis and cell proliferation in the subventricular zone in female mice, Front. Behav. Neurosci., 2015, vol. 9, p. 106. doi 10.3389/fnbeh.2015.00106

    PubMed  PubMed Central  Google Scholar 

  • Hsiao, Y.H., Hung, H.C., Chen, S.H., and Gean, P.W., Social interaction rescues memory deficit in an animal model of Alzheimer’s disease by increasing BDNF dependent hippocampal neurogenesis, J. Neurosci., 2014, vol. 34, no. 49, pp. 16207–16219.

    Article  PubMed  Google Scholar 

  • Imayoshi, I., Sakamoto, M., Ohtsuka, T., et al., Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain, Nat. Neurosci., 2008, vol. 11, pp. 1153–1161.

    Article  CAS  PubMed  Google Scholar 

  • Jessberger, S., Clark, R.E., Broadbent, N.J., et al., Dentate gyrus-specific knockdown of adult neurogenesis impairs spatial and object recognition memory in adult rats, Learn. Mem., 2009, vol. 16, pp. 147–154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karow, M., Sanchez, R., Schichor, C., et al., Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells, Cell Stem Cell, 2012, vol. 11, pp. 471–476.

    Article  CAS  PubMed  Google Scholar 

  • Kazanis, I., Gorenkova, N., Zhao, J.W., et al., The late response of rat subependymal zone stem and progenitor cells to stroke is restricted to directly affected areas of their niche, Exp. Neurol., 2013, vol. 248, pp. 387–397.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitamura, T. and Inokuchi, K., Role of adult neurogenesis in hippocampal-cortical memory consolidation, Mol. Brain, 2014, vol. 7, pp. 13. doi 10.1186/1756-6606-7-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, M., Nakatani, T., Koda, T., et al., Absence of BRINP1 in mice causes increase of hippocampal neurogenesis and behavioral alterations relevant to human psychiatric disorders, Mol. Brain, 2014, vol. 7, p. 12. doi 10.1186/1756-6606-7-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Kojima, T., Hirota, Y., Ema, M., et al., Subventricular zonederived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum, Stem Cells, 2010, vol. 28, pp. 545–554.

    PubMed  Google Scholar 

  • Kokaia, Z., Martino, G., Schwartz, M., and Lindvall, O., Crosstalk between neural stem cells and immune cells: the key to better brain repair? Nat. Neurosci., 2012, vol. 15, pp. 1078–1087.

    Article  CAS  PubMed  Google Scholar 

  • Kokoeva, M.V., Yin, H., and Flier, J.S., Neurogenesis in the hypothalamus of adult mice: potential role in energy balance, Science, 2005, vol. 310, no. 5748, pp. 679–683.

    Article  CAS  PubMed  Google Scholar 

  • Kuvacheva, N.V., Morgun, A.V., Komleva, Yu.K., et al., Effect of enriched environment on the early stages of the development of progenitor cells of the brain in young and aging rats, Sib. Med. Zh. (Irkutsk), 2013, vol. 120, no. 5, pp. 47–51.

    Google Scholar 

  • Lazic, S.E., Fuss, J., and Gass, P., Quantifying the behavioural relevance of hippocampal neurogenesis, PLoS One, 2014, vol. 9, no. 11, p. e113855. doi 10.1371/journal.pone.0113855

    Article  PubMed  PubMed Central  Google Scholar 

  • Lieberwirth, C. and Wang, Z., The social environment and neurogenesis in the adult Mammalian brain, Front. Hum. Neurosci., 2012, vol. 6, p. 118. doi 10.3389/fnhum.2012.00118

    Article  PubMed  PubMed Central  Google Scholar 

  • Lieberwirth, C., Liu, Y., Jia, X., and Wang, Z., Social isolation impairs adult neurogenesis in the limbic system and alters behaviors in female prairie voles, Horm. Behav., 2012, vol. 62, no. 4, pp. 357–366.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, A., Jain, N., Vyas, A., and Lim, L.W., Ventromedial prefrontal cortex stimulation enhances memory and hippocampal neurogenesis in the middle-aged rats, Elife, 2015, vol. 4. doi 10.7554/eLife.04803

  • Lu, Z., Elliott, M.R., Chen, Y., et al., Phagocytic activity of neuronal progenitors regulates adult neurogenesis, Nat. Cell. Biol., 2011, vol. 13, pp. 1076–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucassen, P.J., Stumpel, M.W., Wang, Q., and Aronica, E., Decreased numbers of progenitor cells but no response to antidepressant drugs in the hippocampus of elderly depressed patients, Neuropharmacology, 2010, vol. 58, no. 6, pp. 940–949.

    Article  CAS  PubMed  Google Scholar 

  • Martino, G., Butti, E., and Bacigaluppi, M., Neurogenesis or non-neurogenesis: that is the question, J. Clin. Invest., 2014, vol. 124, no. 3, pp. 970–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malberg, J.E., Eisch, A.J., Nestler, E.J., and Duman, R.S., Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus, J. Neurosci., 2000, vol. 20, pp. 9104–9110.

    CAS  PubMed  Google Scholar 

  • Martí-Fàbregas J., Romaguera-Ros M., Gómez-Pinedo U., et al., Proliferation in the human ipsilateral subventricular zone after ischemic stroke, Neurology, 2010, vol. 74, pp. 357–365.

    Article  PubMed  Google Scholar 

  • Martino, G., Butti, E., and Bacigaluppi, M., Neurogenesis or non-neurogenesis: that is the question, J. Clin. Invest., 2014, vol. 124, no. 3, pp. 970–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massa, F., Koehl, M., Wiesner, T., et al., Conditional reduction of adult neurogenesis impairs bidirectional hippocampal synaptic plasticity, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 6644–6649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mosher, K.I., Andres, R.H., Fukuhara, T., et al., Neural progenitor cells regulate microglia functions and activity, Nat. Neurosci., 2012, vol. 15, pp. 1485–1487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nait-Oumesmar, B., Decker, L., Lachapelle, F., et al., Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination, Eur. J. Neurosci., 1999, vol. 11, pp. 4357–4366.

    Article  CAS  PubMed  Google Scholar 

  • Obernier, K., Tong, C.K., and Alvarez-Buylla, A., Restricted nature of adult neural stem cells: re-evaluation of their potential for brain repair, Front Neurosci., 2014, vol. 8, p. 162. doi 10.3389/fnins.2014.00162

    Article  PubMed  PubMed Central  Google Scholar 

  • Osman, A.M., Porritt, M.J., Nilsson, M., and Kuhn, H.G., Long-term stimulation of neural progenitor cell migration after cortical ischemia in mice, Stroke, 2011, vol. 42, pp. 3559–3565.

    Article  PubMed  Google Scholar 

  • Pan, Y.W., Storm, D.R., and Xia, Z., Role of adult neurogenesis in hippocampus-dependent memory, contextual fear extinction and remote contextual memory: new insights from ERK5 MAP kinase, Neurobiol. Learn. Mem., 2013, vol. 105, pp. 81–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peretto, P. and Bonfanti, L., Adult neurogenesis 20 years later: physiological function vs. brain repair, Front. Neurosci., 2015, vol. 9, p. 71. doi 10.3389/fnins.2015.00071

    Article  PubMed  PubMed Central  Google Scholar 

  • Picard-Riera, N., Decker, L., Delarasse, C., et al., Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 13211–13216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojczyk-Golebiewska, E., Palasz, A., and Wiaderkiewicz, R., Hypothalamic subependymal niche: a novel site of the adult neurogenesis, Cell. Mol. Neurobiol., 2014, vol. 34, pp. 631–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabelström, H., Stenudd, M., Reu, P., et al., Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice, Science, 2013, vol. 342, pp. 637–640.

    Article  PubMed  Google Scholar 

  • Sanin, V., Heeß, C., Kretzschmar, H., and Schüller, U., Recruitment of neural precursor cells from circumventricular organs of patients with cerebral ischaemia, Neuropathol. Appl. Neurobiol., 2013, vol. 39, no. 5, pp. 510–518.

    Article  CAS  PubMed  Google Scholar 

  • Santarelli, L., Saxe, M., Gross, C., et al., Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants, Science, 2003, vol. 301, no. 5634, pp. 805–809.

    Article  CAS  PubMed  Google Scholar 

  • Shingo, T., Gregg, C., Enwere, E., et al., Pregnancy stimulated neurogenesis in the adult female forebrain mediated by prolactin, Science, 2003, vol. 299, pp. 117–120.

    Article  CAS  PubMed  Google Scholar 

  • Sierra, A., Encinas, J.M., Deudero, J.J., et al., Microglia shape adult hippocampal neurogenesis through apoptosiscoupled phagocytosis, Cell. Stem. Cell, 2010, pp. 483–495.

    Google Scholar 

  • Smagin, D.A., Park, J.H., Michurina, T.V., et al., Altered hippocampal neurogenesis and amygdalar neuronal activity in adult mice with repeated experience of aggression, Front. Neurosci., 2015, vol. 9, p. 443.

    Article  PubMed  PubMed Central  Google Scholar 

  • Snyder, J.S. and Cameron, H.A., Could adult hippocampal neurogenesis be relevant for human behavior? Behav. Brain Res., 2012, vol. 227, pp. 384–390.

    Article  PubMed  Google Scholar 

  • Snyder, J.S., Soumier, A., Brewer, M., et al., Adult hippocampal neurogenesis buffers stress responses and depressive behavior, Nature, 2011, vol. 476, no. 7361, pp. 458–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soloviova, O.A., Proshin, A.T., Storozheva, Z.I., and Sherstnev, V.V., Neurogenesis enhancer Ro 25-6981 facilitates repeated spatial learning in adult rats, Bull. Exp. Biol. Med., 2012, vol. 153, no. 5, pp. 764–766.

    Article  CAS  PubMed  Google Scholar 

  • Spalding, K.L., Bergmann, O., Alkass, K., et al., Dynamics of hippocampal neurogenesis in adult humans, Cell, 2013, vol. 153, no. 6, pp. 1219–1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan, R., Duncan, K., Dailey, T., et al., A possible new focus for stroke treatment—migrating stem cells, Expert. Opin. Biol. Ther., 2015, vol. 15, no. 7, pp. 949–958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, X., Zhang, Q.W., Xu, M., et al., New striatal neurons form projections to substantia nigra in adult rat brain after stroke, Neurobiol. Dis., 2012, vol. 45, no. 1, pp. 601–609.

    Article  PubMed  Google Scholar 

  • Surget, A., Tanti, A., Leonardo, E.D., et al., Antidepressants recruit new neurons to improve stress response regulation, Mol. Psychiatry, 2011, vol. 16, no. 12, pp. 1177–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tajiri, N., Duncan, K., Antoine, A., et al., Stem cell-paved biobridge facilitates neural repair in traumatic brain injury, Front. Syst. Neurosci., 2014, vol. 8, p. 116. doi 10.3389/fnsys.2014.00116

    Article  PubMed  PubMed Central  Google Scholar 

  • Tiraboschi, E., Tardito, D., Kasahara, J., et al., Selective phosphorylation of nuclear CREB by fluoxetine is linked to activation of CaM kinase IV and MAP kinase cascades, Neuropsychopharmacology, 2004, vol. 29, no. 10, pp. 1831–1840.

    Article  CAS  PubMed  Google Scholar 

  • Tishkina, A.O., Stepanichev, M.Yu., Aniol, V.A., et al., Microglial functions in a healthy brain, Usp. Fiziol. Nauk, 2014, vol. 45, no. 4, pp. 3–18.

    CAS  PubMed  Google Scholar 

  • Trueman, R.C., Klein, A., Lindgren, H.S., et al., Repair of the CNS using endogenous and transplanted neural stem cells, Curr. Top. Behav. Neurosci., 2013, vol. 15, pp. 357–398.

    Article  CAS  PubMed  Google Scholar 

  • Turnley, A.M., Basrai, H.S., and Christie, K.J., Is integration and survival of newborn neurons the bottleneck for effective neural repair by endogenous neural precursor cells? Front. Neurosci., 2014, vol. 8, p. 29. doi 10.3389/fnins.2014.00029

    Article  PubMed  PubMed Central  Google Scholar 

  • Wabik, A. and Jones, P.H., Switching roles: the functional plasticity of adult tissue stem cells, EMBO. J., 2015, vol. 34, no. 9, pp. 1164–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C., Liu, F., Liu, Y.-Y., et al., Identification and characterization of neuroblasts in the subventricular zone and rostral migratory stream of the adult human brain, Cell Res., 2011, vol. 21, no. 11, pp. 1534–1550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H.D., Dunnavant, F.D., Jarman, T., and Deutch, A.Y., Effects of antipsychotic drugs on neurogenesis in the forebrain of the adult rat, Neuropsychopharmacology, 2004, vol. 29, pp. 1230–1238.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Lu, S., Li, T., et al., Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function, J. Neurosci., 2015, vol. 35, no. 20, pp. 7833–7849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Mao, X., Xie, L., et al., Conditional depletion of neurogenesis inhibits long-term recovery after experimental stroke in mice, PLoS One, 2012, vol. 7, no. 6, p. e38932. doi 10.1371/journal.pone.0038932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, M.V., Sahay, A., Duman, R.S., and Hen, R., Functional differentiation of adult-born neurons along the septotemporal axis of the dentate gyrus, Cold. Spring. Harb. Perspect. Biol., 2015, vol. 7, p. a018978. doi 10.1101/cshperspect.a018978

    Article  PubMed  Google Scholar 

  • Wu, M.V., Shamy, J.L., Bedi, G., et al., Impact of social status and antidepressant treatment on neurogenesis in the baboon hippocampus, Neuropsychopharmacology, 2014, vol. 39, no. 8, pp. 1861–1871.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi, M. and Mori, K., Critical periods in adult neurogenesis and possible clinical utilization of new neurons, Front. Neurosci., 2014, vol. 8, pp. 177–183.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, J., Shi, Q.D., Yang, Y.B., et al., Vasoactive intestinal peptide administration after stroke in rats enhances neurogenesis and improves neurological function, Brain Res., 2015. doi 10.1016/j.brainres.2015.09.001

    Google Scholar 

  • Yarygin, K.N. and Yarygin, V.N., Neurogenesis in the central nervous system and prospects of regenerative neurology, Zh. Nevropatol. Psikhiatr. im. S.S. Korsakova, 2012, vol. 112, no. 1, pp. 4–13.

    Google Scholar 

  • Yu, T.S., Zhang, G., Liebl, D.J., and Kernie, S.G., Traumatic brain injury-induced hippocampal neurogenesis requires activation of early nestin-expressing progenitors, J. Neurosci., 2008, vol. 28, pp. 12901–12912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, R.L., Zhang, Z.G., and Chopp, M., Ischemic stroke and neurogenesis in the subventricular zone, Neuropharmacology, 2008, vol. 55, pp. 345–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z.G. and Chopp, M., Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic, Lancet. Neurol., 2009, vol. 8, pp. 491–500.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Gomazkov.

Additional information

Original Russian Text © O.A. Gomazkov, 2016, published in Uspekhi Sovremennoi Biologii, 2016, Vol. 136, No. 3, pp. 227–246.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomazkov, O.A. Neurogenesis as an organizing function of the adult brain: Is there enough evidence?. Biol Bull Rev 6, 457–472 (2016). https://doi.org/10.1134/S2079086416060013

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086416060013

Keywords

Navigation