Skip to main content
Log in

Assessing the relative strength of the effects of food resources and predators on a population: A review of methods

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

An understanding of the mechanisms that underlie species distribution and abundance is one of the key problems in population ecology. In order to tackle this problem, it is important to assess the relative strength of the effects of food and predators (consumers) on a focal population. In this study we analysed the advantages and disadvantages of the basic methods that are used to quantify the relative strength of the two types of effects. These methods can be divided into two groups. In the first group, we included the search for examples that are consistent with a proposed hypothesis, the assessment of correlations of abundance at adjacent trophic levels and biomanipulations. What is common for these methods is that they assume the existence of only one type of effect—either bottom-up or top-down. The methods of the second group assume the simultaneous presence of both types of effects and are aimed at quantifying their relative strength. This group includes factorial design experiments and the population-dynamics approach (analysis of population growth, death and birth rates). Here, we have shown that, due to the constraints of each of the methods of the second group, none of them can be considered universal. However, their combined application can be a promising approach to the assessment of the mechanisms that drive population abundance variability, both in experimental and field studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alimov, A.F., Vvedenie v produktsionnuyu gidrobiologiyu (Introduction to Production Hydrobiology), Leningrad: Gidrometeoizdat, 1989.

    Google Scholar 

  • Berryman, A.A., What causes population cycles of forest Lepidoptera? Trends Ecol. Evol., 1996, vol. 11, no. 1, pp. 28–32.

    Article  CAS  PubMed  Google Scholar 

  • Berryman, A. and Turchin, P., Detection of delayed density dependence: comment, Ecology, 1997, vol. 78, no. 1, pp. 318–320.

    Article  Google Scholar 

  • Bizina, E.V., Ratio of the impact of predators and resource supply in regulation of structure and functions of communities: review of hypothesizes, Zh. Obshch. Biol., 1997, vol. 58, no. 5, pp. 26–45.

    Google Scholar 

  • Boettiger, C. and Hastings, A., Early warning signals and the prosecutor’s fallacy, Proc. R. Soc. B, 2012, vol. 279, no. 1748, pp. 4734–4739.

    Article  PubMed Central  PubMed  Google Scholar 

  • Boettiger, C. and Hastings, A., Tipping points: from patterns to predictions, Nature, 2013a, vol. 493, no. 7431, pp. 157–158.

    CAS  PubMed  Google Scholar 

  • Boettiger, C. and Hastings, A., No early warning signals for stochastic transitions: insights from large deviation theory, Proc. R. Soc. B, 2013b, vol. 280, no. 1766. doi: 10.1098/rspb.2013.1372

    Google Scholar 

  • Bottrell, H.C., A review of some problems in zooplankton production studies, Norw. J. Zool., 1976, vol. 24, pp. 419–456.

    Google Scholar 

  • Brooks, J.L. and Dodson, S.I., Predation, body size, and composition of plankton, Science, 1965, vol. 150, no. 3692, pp. 28–35.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J.H. and Kodric-Brown, A., Turnover rates in insular biogeography: effect of immigration on extinction, Ecology, 1977, vol. 58, no. 2, pp. 445–449.

    Article  Google Scholar 

  • Carpenter, S.R. and Kitchell, J.F., The temporal scale of variance in limnetic primary production, Am. Nat., 1987, vol. 129, no. 3, pp. 417–433.

    Article  Google Scholar 

  • Carpenter, S.R., Kitchell, J.F., and Hodgson, J.R., Cascading trophic interactions and lake productivity, BioScience, 1985, vol. 35, no. 10, pp. 634–639.

    Article  Google Scholar 

  • Dempster, J.P., The population ecology of the cinnabar moth, Tyria jacobaeae L. (Lepidoptera, Arctiidae), Oecologia, 1971, vol. 7, no. 1, pp. 26–67.

    Article  Google Scholar 

  • Denno, R.F., et al., Bottom-up forces mediate naturalenemy impact in a phytophagous insect community, Ecology, 2002, vol. 83, no. 5, pp. 1443–1458.

    Article  Google Scholar 

  • Denno, R.F., Gratton, C., Döbel, H., and Finke, D.L., Predation risk affects relative strength of top-down and bottom-up impacts on insect herbivores, Ecology, 2003, vol. 84, no. 4, pp. 1032–1044.

    Article  Google Scholar 

  • Denno, R.F., Lewis, D., and Gratton, C., Spatial variation in the relative strength of top-down and bottom-up forces: causes and consequences for phytophagous insect populations, Ann. Zool. Fenn., 2005, vol. 42, no. 4, pp. 295–311.

    Google Scholar 

  • Edmondson, W.T., A graphical model for evaluating the use of the egg ratio for measuring birth and death rates, Oecologia, 1968, vol. 1, nos. 1-2, pp. 1–37.

    Article  Google Scholar 

  • Elton, C., Animal Ecology, London: Sidgwick and Jackson, 1927.

    Google Scholar 

  • Fretwell, S.D., The regulation of plant communities by food chains exploiting them, Perspect. Biol. Med., 1977, vol. 20, no. 169, pp. 169–185.

    Article  Google Scholar 

  • Fretwell, S.D., Food chain dynamics: the central theory of ecology? Oikos, 1987, vol. 50, pp. 291–301.

    Article  Google Scholar 

  • Gladyshev, M.I., Biomanipulation as a tool for regulation of water quality in continental reservoirs: literature review of 1990–1999, Biol. Vnutr. Vod, 2001, no. 2, pp. 3–15.

    Google Scholar 

  • Gliwicz, M.Z., On the different nature of top-down and bottom-up effects in pelagic food webs, Freshwater Biol., 2002, vol. 47, no. 12, pp. 2296–2312.

    Article  Google Scholar 

  • Gripenberg, S. and Roslin, T., Up or down in space? Uniting the bottom-up versus top-down paradigm and spatial ecology, Oikos, 2007, vol. 116, no. 2, pp. 181–188.

    Article  Google Scholar 

  • Hairston, N.G., Smith, F.E., and Slobodkin, L.B., Community structure, population control, and competition, Am. Nat., 1960, pp. 421–425.

    Google Scholar 

  • Hanski, I., Metapopulation dynamics, Nature, 1998, vol. 396, no. 6706, pp. 41–49.

    Article  CAS  Google Scholar 

  • Hanson, J.M. and Peters, R.H., Empirical prediction of crustacean zooplankton biomass and profundal macrobenthos biomass in lakes, Can. J. Fish. Aquat. Sci., 1984, vol. 41, no. 3, pp. 439–445.

    Article  CAS  Google Scholar 

  • Hansson, L.-A., The role of food chain composition and nutrient availability in shaping algal biomass development, Ecology, 1992, vol. 73, no. 1, pp. 241–247.

    Article  Google Scholar 

  • Hassell, M.P., Crawley, M.J., Godfray, H.C.J., and Lawton, J.H., Top-down versus bottom-up and the Ruritanian bean bug, Proc. Natl. Acad. Sci. U.S.A., 1998, vol. 95, no. 18, pp. 10661–10664.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hunter, M.D., Multiple approaches to estimating the relative importance of top-down and bottom-up forces on insect populations: experiments, life tables, and timeseries analysis, Basic Appl. Ecol., 2001, vol. 2, no. 4, pp. 295–309.

    Article  Google Scholar 

  • Hunter, M.D. and Price, P.W., Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities, Ecology, 1992, vol. 73, no. 3, pp. 723–732.

    Article  Google Scholar 

  • Hunter, M.D., Varley, G.C., and Gradwell, G.R., Estimating the relative roles of top-down and bottom-up forces on insect herbivore populations: a classic study revisited, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, no. 17, pp. 9176–9181.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ivlev, V.S., Biological productivity of reservoirs, Usp. Sovrem. Biol., 1945, vol. 19, pp. 98–120.

    Google Scholar 

  • Kasparson, A.A. and Polishchuk, L.V., Analysis of the birth rate in population of Bosmina longirostris, in Tr. konf. “Informatsionnye tekhnologii i sistemy” (Trans. Conf. “Information Technologies and Systems”), Moscow: Inst. Probl. Peredachi Inform., Ross. Akad. Nauk, 2013, pp. 140–145.

    Google Scholar 

  • Krebs, C.J., Ecology: The Experimental Analysis of Distribution and Abundance, New York: Harper and Row, 1985.

    Google Scholar 

  • Leibold, M.A., Chase, J.M., Shurin, J.B., and Downing, A.L., Species turnover and the regulation of trophic structure, Ann. Rev. Ecol. Syst., 1997, vol. 28, pp. 467–494.

    Article  Google Scholar 

  • Lindeman, R.L., The trophic-dynamic aspect of ecology, Ecology, 1942, vol. 23, no. 4, pp. 399–417.

    Article  Google Scholar 

  • McCauley, E. and Kalff, J., Empirical relationships between phytoplankton and zooplankton biomass in lakes, Can. J. Fish. Aquat. Sci., 1981, vol. 38, no. 4, pp. 458–463.

    Article  Google Scholar 

  • McQueen, D.J., Post, J.R., and Mills, E.L., Trophic relationships in freshwater pelagic ecosystems, Can. J. Fish. Aquat. Sci., 1986, vol. 43, no. 8, pp. 1571–1581.

    Article  Google Scholar 

  • Menge, B.A., Community regulation: under what conditions are bottom-up factors important on rocky shores? Ecology, 1992, vol. 73, no. 3, pp. 755–765.

    Article  Google Scholar 

  • Mittelbach, G.G., Osenberg, C.W., and Leibold, M.A., Trophic relations and ontogenetic niche shifts in aquatic ecosystems, in Size-Structured Populations, Berlin: Springer-Verlag, 1988, pp. 219–235.

    Chapter  Google Scholar 

  • Morris, R.F., Single-factor analysis in population dynamics, Ecology, 1959, vol. 40, no. 4, pp. 580–588.

    Article  Google Scholar 

  • Murdoch, W.W., Community structure, population control, and competition—a critique, Am. Nat., 1966, vol. 100, no. 912, pp. 219–226.

    Article  Google Scholar 

  • Oksanen, L., Fretwell, S.D., Arruda, J., and Niemela, P., Exploitation ecosystems in gradients of primary productivity, Am. Nat., 1981, vol. 118, no. 2, pp. 240–261.

    Article  Google Scholar 

  • Olofsson, J., de Mazancourt, C., and Crawley, M.J., Contrasting effects of rabbit exclusion on nutrient availability and primary production in grasslands at different time scales, Oecologia, 2007, vol. 150, no. 4, pp. 582–589.

    Article  PubMed  Google Scholar 

  • Paine, R.T., Food web complexity and species diversity, Am. Nat., 1966, vol. 100, pp. 65–75.

    Article  Google Scholar 

  • Paine, R.T., Food webs: linkage, interaction strength and community infrastructure, J. Anim. Ecol., 1980, vol. 49, no. 3, pp. 667–685.

    Article  Google Scholar 

  • Paloheimo, J.E., Calculation of instantaneous birth rate, Limnol. Oceanogr., 1974, vol. 19, no. 4, pp. 692–694.

    Article  Google Scholar 

  • Polis, G.A., Complex trophic interactions in deserts: an empirical critique of food-web theory, Am. Nat., 1991, vol. 138, no. 1, pp. 123–155.

    Article  Google Scholar 

  • Polis, G.A., Sears, A.W.L., Huxel, G.R., Strong, D.R., and Maron, J., When is a trophic cascade a trophic cascade? Trends Ecol. Evol., 2000, vol. 15, no. 11, pp. 473–475.

    Article  PubMed  Google Scholar 

  • Polis, G.A. and Strong, D.R., Food web complexity and community dynamics, Am. Nat., 1996, vol. 147, no. 5, pp. 813–846.

    Article  Google Scholar 

  • Polishchuk, L.V., Direct positive effect of invertebrate predators on birth rate in Daphnia studied with a new method of birth rate analysis, Limnol. Oceanogr., 1995, vol. 40, no. 3, pp. 483–489.

    Article  Google Scholar 

  • Polishchuk, L.V., Vijverberg, J., Voronov, D.A., and Mooij, W.M., How to measure top-down vs bottom-up effects: a new population metric and its calibration on Daphnia, Oikos, 2013, vol. 122, no. 8, pp. 1177–1186.

    Article  Google Scholar 

  • Power, M.E., Top-down and bottom-up forces in food webs: do plants have primacy, Ecology, 1992, vol. 73, no. 3, pp. 733–746.

    Article  Google Scholar 

  • Preszler, R.W. and Price, P.W., Host quality and sawfly populations: a new approach to life table analysis, Ecology, 1988, vol. 69, no. 6, pp. 2012–2020.

    Article  Google Scholar 

  • Ricker, W.E., Stock and recruitment, J. Fish. Board Can., 1954, vol. 11, no. 5, pp. 559–623.

    Article  Google Scholar 

  • Rosenzweig, M.L., Exploitation in three trophic levels, Am. Nat., 1973, vol. 107, pp. 275–294.

    Article  Google Scholar 

  • Rosenzweig, M.L. and MacArthur, R.H., Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 1963, vol. 97, pp. 209–223.

    Article  Google Scholar 

  • Schmitz, O.J., Hambäck, P.A., and Beckerman, A.P., Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants, Am. Nat., 2000, vol. 155, no. 2, pp. 141–153.

    Article  PubMed  Google Scholar 

  • Shapiro, J., Biomanipulation: the next phase—making it stable, Hydrobiologia, 1990, vols. 200/201, pp. 13–27.

    Article  Google Scholar 

  • Shapiro, J. and Wright, D.I., Lake restoration by biomanipulation: Round Lake, Minnesota, the first two years, Freshwater Biol., 1984, vol. 14, no. 4, pp. 371–383.

    Article  Google Scholar 

  • Silvertown, J., Poulton, P., Johnston, E., Edwards, G., Heard, M., and Biss, P.M., The Park Grass Experiment 1856–2006: its contribution to ecology, J. Ecol., 2006, vol. 94, no. 4, pp. 801–814.

    Article  CAS  Google Scholar 

  • Slobodkin, L.B., Smith, F.E., and Hairston, N.G., Regulation in terrestrial ecosystems, and the implied balance of nature, Am. Nat., 1967, vol. 101, no. 918, pp. 109–124.

    Article  Google Scholar 

  • Stiling, P., Density-dependent processes and key factors in insect populations, J. Anim. Ecol., 1988, vol. 57, pp. 581–593.

    Article  Google Scholar 

  • Strong, D.R., Are trophic cascades all wet? Differentiation and donor-control in species ecosystems, Ecology, 1992, vol. 73, no. 3, vol. 747–754.

    Google Scholar 

  • Thompson, W.C. and Schumann, E.L., Interpretation of statistical evidence in criminal trials: the prosecutor’s fallacy and the defense attorney’s fallacy, Law Hum. Behav., 1987, vol. 11, no. 3, pp. 167–187.

    Article  Google Scholar 

  • Turkington, R., Top-down and bottom-up forces in mammalian herbivore-vegetation systems: an essay review, Botany, 2009, vol. 87, no. 8, pp. 723–739.

    Article  Google Scholar 

  • Underwood, N. and Rausher, M.D., The effects of hostplant genotype on herbivore population dynamics, Ecology, 2000, vol. 81, no. 6, pp. 1565–1576.

    Article  Google Scholar 

  • Varley, G.C. and Gradwell, G.R., Key factors in population studies, J. Anim. Ecol., 1960, vol. 29, no. 2, pp. 399–401.

    Article  Google Scholar 

  • Vinberg, G.G., Study of photosynthesis and respiration in the lake water. Balance of organic matter, Tr. Limnol. Stn. Kostine, 1934, vol. 18, pp. 5–24.

    Google Scholar 

  • Vinberg, G.G., Diversity and integrity of life phenomena and quantitative methods in biology, Zh. Obshch. Biol., 1981, vol. 42, no. 1, pp. 5–18.

    Google Scholar 

  • Walker, M. and Jones, T.H., Relative roles of top-down and bottom-up forces in terrestrial tritrophic plant–insect herbivore–natural enemy systems, Oikos, 2001, vol. 93, no. 2, pp. 177–187.

    Article  Google Scholar 

  • Wilmers, C.C., Post, E., Peterson, R.O., and Vucetich, J.A., Predator disease out-break modulates top-down, bottom-up and climatic effects on herbivore population dynamics, Ecol. Lett., 2006, vol. 9, no. 4, pp. 383–389.

    Article  PubMed  Google Scholar 

  • Yamamura, K., Key-factor/key-stage analysis for life table data, Ecology, 1999, vol. 80, no. 2, pp. 533–537.

    Article  Google Scholar 

  • Yan, N.D., Empirical prediction of crustacean zooplankton biomass in nutrient-poor Canadian Shield lakes, Can. J. Fish. Aquat. Sci., 1986, vol. 43, no. 4, pp. 788–796.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kasparson.

Additional information

Original Russian Text © A.A. Kasparson, 2015, published in Zhurnal Obshchei Biologii, 2015, Vol. 76, No. 2, pp. 111–125.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasparson, A.A. Assessing the relative strength of the effects of food resources and predators on a population: A review of methods. Biol Bull Rev 6, 11–23 (2016). https://doi.org/10.1134/S2079086416010023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086416010023

Keywords

Navigation