Skip to main content
Log in

Immunogenic properties of a probiotic component of the human gastrointestinal tract microbiota

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The review considers the basic ligands of probiotic microorganisms that induce immune response, as well as the role of species and strain specificity of Lactobacillus and Bifidobacterium in the formation of immunomodulatory effects. Some Lactobacillus and Bifidobacterium strains suppress the production of proinflammatory cytokines for gastroenteritis, colitis, type II diabetes, and Crohn’s disease. The identification of bacterial genes and mechanisms responsible for the communication of bacteria with the host organism is an important area in the research of immunomodulatory effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arumugam, M., Raes, J., Pelletier, E., et al., Enterotypes of the human gut microbiome, Nature, 2011, vol. 473, pp. 80–174.

    Google Scholar 

  • Arunachalam, K., Gill, H.S., and Chandra, R.K., Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019), Eur. J. Clin. Nutr., 2000, vol. 54, pp. 263–267.

    CAS  PubMed  Google Scholar 

  • Averina, O.V., Alekseeva, M.G., Abilev, S.K., et al., Distribution of genes of toxin-antitoxin systems of MazEF and RelBE families in bifidobacteria from human intestinal microbiota, Russ. J. Genet., 2013, vol. 49, no. 3, pp. 275–285.

    CAS  Google Scholar 

  • Averina, O.V., Nezametdinova, V.Z., Alekseeva, M.G., and Danilenko, V.N., Genetic instability of probiotic characteristics in the Bifidobacterium longum subsp. longum B379M strain during cultivation and maintenance, Russ. J. Genet., 2012a, vol. 48, no. 11, pp. 1103–1111.

    CAS  Google Scholar 

  • Averina, O.V., Zacharevich, N.V., and Danilenko, V.N., Identification and characterization of WhiB-like family proteins of the Bifidobacterium genus, Anaerobe, 2012b, vol. 18, pp. 421–429.

    CAS  PubMed  Google Scholar 

  • Badawi, A., Klip, A., Haddad, P., et al., Type 2 diabetes mellitus and inflammation: prospects for biomarkers of risk and nutritional intervention diabetes, Metab. Syndr. Obes., 2010, vol. 3, pp. 173–186.

    CAS  Google Scholar 

  • Bai, A.P., Ouyang, Q., Zhang, W., et al., Probiotics inhibit TNFα-induced interleukin-8 secretion of HT29 cells, World J. Gastroenterol., 2004, vol. 10, pp. 455–457.

    CAS  PubMed  Google Scholar 

  • Bassaganya-Riera, J., Viladomiu, M., Pedragosa, M., et al., Immunoregulatory mechanisms underlying prevention of colitis-associated colorectal cancer by probiotic bacteria, PLoS One, 2012, vol. 7, p. e34676.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bayles, K.W., The biological role of death and lysis in biofilm development, Nat. Rev. Microbiol., 2007, vol. 5, no. 9, pp. 721–726.

    CAS  PubMed  Google Scholar 

  • Blander, M.J., Phagocytosis and antigen presentation: a partnership initiated by Toll-like receptors, Ann. Rheum. Dis., 2008, vol. 67, pp. 44–49.

    Google Scholar 

  • Cani, P.D. and Delzenne, N.M., Gut microflora as a target for energy and metabolic homeostasis, Curr. Opin. Clin. Nutr. Metab. Care, 2007, vol. 10, pp. 729–734.

    PubMed  Google Scholar 

  • Cani, P., Delzenne, N.M., Amar, J., and Burcelin, R., Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding, Pathol. Biol., 2008, vol. 56, pp. 305–309.

    CAS  PubMed  Google Scholar 

  • Caselli, M., Cassol, F., Calo, G., et al., Actual concept of “probiotics”: is it more functional to science or business? World J. Gastroenterol., 2013, vol. 19, no. 10, pp. 1527–1540.

    PubMed Central  PubMed  Google Scholar 

  • Caselli, M., Vaira, G., Calo, G., et al., Structural bacterial molecules as potential candidates for an evolution of the classical concept of probiotics, Adv. Nutr., 2011, vol. 2, pp. 372–376.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caselli, M., Vaira, D., Cassol, F., et al., Recombinant probiotics and their potential in human health, Int. J. Probiotics Prebiotics, 2012, vol. 7, pp. 53–58.

    Google Scholar 

  • Chapman, T.M., Plosker, G.L., and Figgitt, D.P., VSL3 probiotic mixture: a review of its use in chronic inflammatory bowel diseases, Drugs, 2006, vol. 66, pp. 1371–1387.

    CAS  PubMed  Google Scholar 

  • Chernovsky, A., Innate receptors and microbes in induction of autoimmunity, Curr. Opin. Immunol., 2009, vol. 21, pp. 641–647.

    Google Scholar 

  • Danilenko, V.N., Osolodkin, D.I., Lakatosh, S.A., et al., Bacterial eukaryotic type serine-threonine protein kinases: tools for targeted anti-infective drug design, Curr. Topics Med. Chem., 2011, vol. 11, no. 11, pp. 1352–1369.

    CAS  Google Scholar 

  • Delcour, J., Ferain, T., Deghorain, M., et al., The biosynthesis and functionality of the cell-wall of lactic acid bacteria, Antonie Van Leeuwenhoek, 1999, vol. 76, pp. 159–184.

    CAS  PubMed  Google Scholar 

  • Dev, S., Mizuguchi, H., Das, A.K., et al., Suppression of histamine signaling by probiotic Lac-B: a possible mechanism of its anti-allergic effect, J. Pharmacol. Sci., 2008, vol. 107, pp. 159–166.

    CAS  PubMed  Google Scholar 

  • Ehrt, S., Schnappinger, D., Bekiranov, S., et al., Reprogramming of the macrophage transcriptome in response to interferon-γ and Mycobacterium tuberculosis: signaling roles of nitric oxide synthase-2 and phagocyte oxidase, J. Exp. Med., 2001, vol. 194, pp. 1123–1140.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elinav, E., Strowig, T., Henao-Mejia, J., and Flavell, R.A., Regulation of the antimicrobial response by NLR proteins, Immunity, 2011, vol. 34, pp. 665–679.

    CAS  PubMed  Google Scholar 

  • Eperon, S. and Jungi, T.W., The use of human monocytoid lines as indicators of endotoxin, J. Immunol. Methods, 1996, vol. 194, pp. 121–129.

    CAS  PubMed  Google Scholar 

  • Eun, C.S., Han, D.S., Lee, S.H., et al., Probiotics may reduce inflammation by enhancing peroxisome proliferator activated receptor γ activation in HT-29 cells, Korean J. Gastroenterol., 2007, vol. 49, pp. 139–146.

    PubMed  Google Scholar 

  • Fink, L.N., Zeithen, L.H., Christensen, H.R., et al., Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses, Int. Immunol., 2007, vol. 19, pp. 1319–1327.

    CAS  PubMed  Google Scholar 

  • Frick, J.S., Schenk, K., Quitadamo, M., et al., Lactobacillus fermentum attenuates the proinflammatory effect of Yersinia enterocolitica on human epithelial cells, Inflamm. Bowel. Dis., 2007, vol. 13, pp. 83–90.

    PubMed  Google Scholar 

  • Gaboriau-Routhiau, V.R., Rakotobe, S., Lécuyer, E., et al., The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses, Immunity, 2009, vol. 31, pp. 677–689.

    CAS  PubMed  Google Scholar 

  • Garett, W.S., Gallini, C.A., and Yatsunenko, T., Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis, Cell Host Microbe, 2010, vol. 8, pp. 292–300.

    Google Scholar 

  • Geiman, D.E., Raghunand, T.R., Agarwal, N., and Bishai, W.R., Differential gene expression in response to exposure to antimycobacterial agents and other stress conditions among seven Mycobacterium tuberculosis whiB-like genes, Antimicrob. Agents Chemother., 2006, vol. 50, no. 8, pp. 2836–2841.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghadimi, D., de Vrese, M., Heller, K.J., and Schrezenmeir, J., Lactic acid bacteria enhance autophagic ability of mononuclear phagocytes by increasing Th1 autophagypromoting cytokine (IFN-gamma) and nitric oxide (NO) levels and reducing Th2 autophagy-restraining cytokines (IL-4 and IL-13) in response to Mycobacterium tuberculosis antigen, Int. Immunopharmacol., 2010, vol. 10, no. 6, pp. 694–706.

    CAS  PubMed  Google Scholar 

  • Ghadimi, D., Fölster-Holst, R., de Vrese, M., et al., Effects of probiotic bacteria and their genomic DNA on TH1/TH2-cytokine production by peripheral blood mononuclear cells (PBMCs) of healthy and allergic subjects, Immunobiology, 2008, vol. 213, pp. 677–692.

    CAS  PubMed  Google Scholar 

  • Gómez-Llorente, C., Muñoz, S., and Gil, A., Role of Toll-like receptors in the development of immunotolerance mediated by probiotics, Proc. Nutr. Soc., 2010, vol. 69, pp. 381–389.

    PubMed  Google Scholar 

  • Heijtz, R.D., Wang, S., Anuar, F., et al., Normal gut micro-biota modulates brain development and behavior, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 3047–3052.

    CAS  PubMed Central  Google Scholar 

  • Hespel, C. and Moser, M., Role of inflammatory dendritic cells in innate and adaptive immunity, Eur. J. Immunol., 2012, vol. 42, pp. 2535–2543.

    CAS  PubMed  Google Scholar 

  • Hoarau, C., Martin, L., Faugaret, D., et al., Supernatant from Bifidobacterium differentially modulates transduction signaling pathways for biological functions of human dendritic cells, PLoS One, 2008.

    Google Scholar 

  • Hooper, L.V., Littman, D.R., and Macpherson, A.J., Interactions between the microbiota and the immune system, Science, 2012, vol. 336, pp. 1268–1273.

    CAS  PubMed  Google Scholar 

  • Human Microbiome Project Consortium, Structure, function and diversity of the healthy human microbiome, Nature, 2012, vol. 486, pp. 207–214.

    Google Scholar 

  • Human Microbiome Project Consortium, A framework for human microbiome research, Nature, 2012, vol. 486, pp. 215–221.

    Google Scholar 

  • Iliev, I.D., Kitazawa, H., Shimosato, T., et al., Strong immunostimulation in murine immune cells by Lactobacillus rhamnosus GG DNA containing novel oligodeoxynucleotide pattern, Cell Microbiol., 2005, vol. 7, pp. 403–414.

    CAS  PubMed  Google Scholar 

  • Il’in, V.K., Volozhin, A.I., and Vikha, G.V., Kolonizatsionnaya rezistentnost’ organizma v izmenennykh usloviyakh obitaniya (Colonization Resistance of an Organism in Fluctuating Conditions of Habitat), Moscow: Nauka, 2004.

    Google Scholar 

  • Jain, A., Gupta, Y., Agrawal, R., et al., Biofilms—a microbial life perspective: a critical review, Crit. Rev. Ther. Drug Carrier Syst., 2007, vol. 24, no. 5, pp. 393–443.

    CAS  PubMed  Google Scholar 

  • Joossens, M., Huys, G., and Cnockaert, M., Dysbiosis of the fecal microbiota in patients with Crohn’s disease and their unaffected relatives, Gut, 2011, vol. 60, pp. 631–637.

    PubMed  Google Scholar 

  • Kalliomaki, M., Salminen, S., Arvilommi, H., et al., Probiotics in primary prevention of atopic disease: a randomized placebo-controlled trial, Lancet, 2001, vol. 357, pp. 1057–1059.

    Google Scholar 

  • Kang, J.Y. and Lee, J.O., Structural biology of the Toll-like receptor family, Annu. Rev. Biochem., 2011, vol. 80, pp. 917–941.

    CAS  PubMed  Google Scholar 

  • Karahashi, H. and Amano, F., Endotoxin-tolerance to the cytotoxicity toward a macrophage-like cell line, J 774.1, induced by lipopolysaccharide and cycloheximide: role of p38 MAPK in induction of the cytotoxicity, Biol. Pharma. Bull., 2003, vol. 26, pp. 1249–1259.

    CAS  Google Scholar 

  • Kayama, H. and Takeda, K., Regulation of intestinal homeostasis by innate and adaptive immunity, Int. Immunol., 2012, vol. 24, pp. 673–680.

    CAS  PubMed  Google Scholar 

  • Kim, H.G., Kim, N.R., Gim, M.G., et al., Lipoteichoic acid isolated from Lactobacillus plantarum inhibits lipopolysaccharide-induced TNFα production in THP-1 cells and endotoxin shock in mice, J. Immunol., 2008, vol. 180, pp. 2553–2561.

    CAS  PubMed  Google Scholar 

  • Kim, C.H., Kim, H.G., Kim, J.Y., et al., Probiotic genomic DNA reduces the production of pro-inflammatory cytokine tumor necrosis factor-alpha, FEMS Microbiol. Lett., 2012, vol. 328, pp. 13–19.

    CAS  PubMed  Google Scholar 

  • Kim, H.G., Lee, S.Y., Kim, N.R., et al., Inhibitory effects of Lactobacillus plantarum lipoteichoic acid (LTA) on Staphylococcus aureus LTA-induced tumor necrosis factor-α production, J. Microbiol. Biotechnol., 2008, vol. 18, pp. 1191–1196.

    CAS  PubMed  Google Scholar 

  • Kim, S.O., Sheikh, H.I., Ha, S.D., et al., G-CSF-mediated inhibition of JNK is a key mechanism for Lactobacillus rhamnosus-induced suppression of TNF production in macrophages, Cell Microbiol., 2006, vol. 8, pp. 1958–1971.

    CAS  PubMed  Google Scholar 

  • Kitazawa, H., Harata, T., Uemura, J., et al., Phosphate group requirement for mitogenic activation of lymphocytes by an extracellular phosphopolysaccharide from Lactobacillus delbrueckii ssp. bulgaricus, Int. J. Food Microbiol., 1998, vol. 40, pp. 169–175.

    CAS  PubMed  Google Scholar 

  • Kitazawa, H., Itoh, T., Tamioaka, Y., et al., Induction of IFN-c and IL-1a production in macrophages stimulated with phosphopolysaccharide produced by Lactococcus lactis ssp. cremoris, Int. J. Food Microbiol., 1996, vol. 31, pp. 99–106.

    CAS  PubMed  Google Scholar 

  • Klebanoff, S.J., Watts, D.H., Mehlin, C., and Headley, C.M., Lactobacilli and vaginal host defense: activation of the human immunodeficiency virus type 1 long terminal repeat, cytokine production, and NFκB, J. Infect. Dis., 1999, vol. 179, pp. 653–660.

    CAS  PubMed  Google Scholar 

  • Kleerebezem, M. and Vaughan, E.E., Probiotic and gut Lactobacilli and Bifidobacteria: molecular approaches to study diversity and activity, Annu. Rev. Microbiol., 2009, vol. 63, pp. 90–269.

    Google Scholar 

  • Klimina, K.M., Kjasova, D.K., Poluektova, E.U., et al., Identification and characterization of toxine-antitoxin systems in strains of Lactobacillus rhamnosus isolated from humans, Anaerobe, 2013, pp. 1–8.

    Google Scholar 

  • Kukkonen, K., Savilahti, E., Haahtela, T., et al., Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial, J. Allergy Clin. Immunol., 2007, vol. 119, pp. 192–198.

    CAS  Google Scholar 

  • Kurosaka, K., Watanabe, N., and Kobayashi, Y., Production of proinflammatory cytokines by resident tissue macrophages after phagocytosis of apoptotic cells, Cell Immunol., 2001, vol. 10(211), no. 1, pp. 1–7.

    Google Scholar 

  • Lammers, K.M., Brigidi, P., Vitali, B., et al., Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells, FEMS Immunol. Med. Microbiol., 2003, vol. 38, pp. 165–172.

    CAS  PubMed  Google Scholar 

  • Larsson, C., Luna, B., Ammerman, N.C., et al., Gene expression of Mycobacterium tuberculosis putative transcription factors whiB1–7 in redox environments, PLoS One, 2012.

    Google Scholar 

  • Lederberg, J. and McCray, A.T., “Ome Sweet” Omics—a genealogical treasury of words, Scientist, 2001, pp. 8–15.

    Google Scholar 

  • Ley, R.E., Obesity and the human microbiome, Curr. Opin. Gastroenterol., 2010, vol. 26, pp. 5–11.

    PubMed  Google Scholar 

  • Lin, Y.P., Thibodeaux, C.H., Pena, J.A., et al., Probiotic Lactobacillus reuteri suppress proinflammatory cytokines via c-Jun, Inflamm. Bowel. Dis., 2008, vol. 14, pp. 1068–1083.

    PubMed  Google Scholar 

  • Ma, D., Forsythe, P., and Bienenstock, J., Live Lactobacillus reuteri is essential for the inhibitory effect on tumor necrosis factor α-induced interleukin-8 expression, Infect. Immunol., 2004, vol. 72, pp. 5308–5314.

    CAS  Google Scholar 

  • Macdonald, T.T. and Monteleone, G., Immunity, inflammation and allergy in the gut, Science, 2005, vol. 307, pp. 1920–1925.

    CAS  PubMed  Google Scholar 

  • Matsuguchi, T., Takagi, A., Matsuzaki, T., et al., Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor a-inducing activities in macrophages through Toll-like receptor 2, Clin. Diagn. Lab. Immunol., 2003, vol. 10, pp. 259–266.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Menard, S., Candalh, C., Bambou, J.C., et al., Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport., Gut, 2004, vol. 53, pp. 821–828.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ménard, O., Gafa, V., Kapel, N., et al., Characterization of immunostimulatory CpG-rich sequences from different Bifidobacterium species, Appl. Environ. Microbiol., 2010, vol. 76, pp. 2846–2855.

    PubMed Central  PubMed  Google Scholar 

  • Microbiota, disease, and back to health: a metastable journey, 2012, vol. 4, p. 137rv7. http://www.medicine.org

  • Mileti, E., Matteoli, G., Iliev, I.D., and Rescigno, M., Comparison of the immunomodulatory properties of three probiotic strains of Lactobacilli using complex culture systems: prediction for in vivo efficacy, PLoS One, 2009, vol. 4, p. 7056.

    Google Scholar 

  • Morrison, D.C. and Ryan, J.L., Bacterial endotoxins and host immune responses, Adv. Immunol., 1979, vol. 28, pp. 293–450.

    CAS  PubMed  Google Scholar 

  • Nakajima, H., Hirota, T., Toba, T., et al., Structure of extra-cellular polysaccharide from slime-forming Lactococcus lactis subsp. cremoris SBT 0495, Carbohydr. Res., 1992, vol. 224, pp. 245–253.

    CAS  PubMed  Google Scholar 

  • Nanau, R.M. and Neuman, M.G., Nutritional and probiotic supplementation in colitis models, Dig. Dis. Sci., 2012, vol. 57, pp. 2786–2810.

    CAS  PubMed  Google Scholar 

  • Nishimura-Uemura, J., Kitazawa, H., Kawai, Y., et al., Functional alteration of mucrine macrophages stimulated with extracellular polysaccharides from Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1, Food Microbiol., 2003, vol. 20, pp. 267–273.

    CAS  Google Scholar 

  • O’Hara, A.M., Regan, P.O., and Fanning, A., Functional modulation of human intestinal epithelial cell responses by Bifidobacterium infantis and Lactobacillus salivarius, Immunology, 2006, vol. 118, pp. 202–215.

    PubMed Central  PubMed  Google Scholar 

  • Okada, Y., Tsuzuki, Y., Hokari, R., et al., Anti-inflammatory effects of the genus Bifidobacterium on macrophages by modification of phospho-IκB and SOCS gene expression, Int. J. Exp. Pathol., 2009, vol. 90, pp. 131–140.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olszak, T., Zeissig, S., and Vera, M.P., Microbial exposure during early life has persistent effects on natural killer T cell function, Science, 2012, vol. 336, pp. 489–493.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patel, R., Biofilms and antimicrobial resistance, Clin. Orthoped. Relat. Res., 2005, vol. 437, no. 1, pp. 41–47.

    Google Scholar 

  • Pena, J.A., Rogers, A.B., Ge, Z., et al., Probiotic Lactobacillus spp. diminish Helicobacter hepaticus-induced inflammatory bowel disease in interleukin-10-deficient mice, Infect. Immun., 2005, vol. 73, pp. 912–920.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peri, F., Calabrese, V., Piazza, M., and Cighetti, R., Synthetic molecules and functionalized nanoparticles targeting the LPS-TLR4 signaling: a new generation of immunotherapeutics, Pure Appl. Chem., 2012, vol. 84, pp. 97–106.

    CAS  Google Scholar 

  • Preidis, G.A. and Versalovic, J., Targeting the human microbiome with antibiotics, probiotics and prebiotics: gastroenterology enters the metagenomics era, Gastroenterology, 2009, vol. 136, pp. 2015–2031.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prozorov, A.A. and Danilenko, V.N., Toxin-antitoxin systems in bacteria: apoptotic tools or metabolic regulators? Microbiology (Moscow), 2010, vol. 79, no. 2, pp. 129–140.

    CAS  Google Scholar 

  • Prozorov, A.A., Zaichikova, M.V., and Danilenko, V.N., Mycobacterium tuberculosis mutants with multidrug resistance: history of origin, genetic and molecular mechanisms of resistance, and emerging challenges, Russ. J. Genet., 2012, vol. 48, no. 1, pp. 1–14.

    CAS  Google Scholar 

  • Qin, J., Li, R., Raes, J., et al., A human gut microbial gene catalogue established by metagenomic sequencing, Nature, 2010, vol. 464, pp. 59–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rachmilewitz, D., Katakura, K., Karmeli, F., et al., Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis, Gastroenterology, 2004, vol. 126, pp. 520–528.

    CAS  PubMed  Google Scholar 

  • Rahija, R.J., Gnotobiotics, in The Mouse in Biomedical Research, New York: Elsevier, 2007, pp. 217–233.

    Google Scholar 

  • Rodriguez-Vita, J. and Lawrence, T., The resolution of inflammation and cancer, Cytokine Growth Factor Rev., 2010, vol. 21, pp. 5–61.

    Google Scholar 

  • Ruiz, P.A., Hoffmann, M., Szcesny, S., et al., Innate mechanisms for Bifidobacterium lactis to activate transient proinflammatory host responses in intestinal epithelial cells after the colonization of germ-free rats, Immunology, 2005, vol. 115, pp. 441–450.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Russell, D.A., Ross, R.P., Fitzgerald, G.F., and Stanton, C., Metabolic activities and probiotic potential of bifidobacteria, Int. J. Food Microbiol., 2011, vol. 149, pp. 88–105.

    CAS  PubMed  Google Scholar 

  • Ryu, Y.H., Baik, J.E., Yang, J.S., et al., Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids, Int. Immunopharmacol., 2009, vol. 9, pp. 127–133.

    CAS  PubMed  Google Scholar 

  • Sartor, R.B., Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis, Nat. Clin. Pract. Gastroenterol. Hepatol., 2006, vol. 3, pp. 390–407.

    CAS  PubMed  Google Scholar 

  • Sato, T., Hishimura-Uemura, J., Shimosato, T., et al., Dextran from Leuconostoc mesenteroides augments immunostimulatory effects by the introduction of phosphate groups, J. Food Prot., 2004, vol. 67, pp. 1719–1724.

    CAS  PubMed  Google Scholar 

  • Schloissnig, S., Arumugam, M., Sunagawa, S., et al., Genomic variation landscape of the human gut microbiome, Nature, 2013, vol. 493, pp. 45–50.

    PubMed Central  PubMed  Google Scholar 

  • Schmitz, G. and Orso, E., CD14 signaling in lipid rafts: new ligands and co-receptors, Curr. Opin. Lipidol., 2002, vol. 13, pp. 513–521.

    CAS  PubMed  Google Scholar 

  • Schwende, H., Fitzke, E., Ambs, P., and Dieter, P., Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3, J. Leuk. Biol., 1996, vol. 59, pp. 555–561.

    CAS  Google Scholar 

  • Shestakov, S.V., Metagenomics of human microbiome, Usp. Sovrem. Biol., 2010, vol. 130, no. 6, pp. 531–543.

    Google Scholar 

  • Suvorov, A., Simanenkov, V., Gromova, L., et al., Enterococci as probiotics or autoprobiotics, in Int. Conf. “Prebiotics and Probiotics Potential for Human Health,” Sofia, April 18, 2011, 2011, pp. 104–112.

    Google Scholar 

  • Szymański, H., Pejcz, J., Jawień, M., et al., Treatment of acute infectious diarrhea in infants and children with a mixture of three Lactobacillus rhamnosus strains-a randomized, double-blind, placebo-controlled trial, Aliment Pharmacol. Ther., 2006, vol. 23, pp. 247–253.

    PubMed  Google Scholar 

  • Takashiba, S., van Dyke, T.E., Amar, S., et al., Differentiation of monocytes to macrophages primes cells for lipopolysaccharide stimulation via accumulation of cytoplasmic nuclear factor kB, Infect. Immunol., 1999, vol. 67, pp. 5573–5578.

    CAS  Google Scholar 

  • Taweechotipatr, M., Iyer, C., Spinler, J.K., et al., Lactobacillus saerimneri and Lactobacillus ruminis: novel human derived probiotic strains with immunomodulatory activities, FEMS Microbiol. Lett., 2009, vol. 293, pp. 65–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas, C.M. and Versalovic, J., Probiotics-host communication: modulation of signaling pathways in the intestine, Gut Microbes, 2011, vol. 1, pp. 148–163.

    Google Scholar 

  • Thompson, P.A., Tobias, P.S., Viriyakosol, S., et al., Lipopolysaccharide (LPS) binding protein inhibits responses to cell bound LPS, J. BiDol. Chem., 2003, vol. 278, pp. 28367–28371.

    CAS  Google Scholar 

  • Triantafilou, K., Triantafilou, M., Ladha, Sh., et al., Fluorescence recovery after photobleaching reveals that LPS rapidly transfers from CD14 to hsp70 and hsp90 on the cell membrane, J. Cell Sci., 2001, vol. 114, pp. 2535–2545.

    CAS  PubMed  Google Scholar 

  • Uemura, J., Itoh, T., Kasneko, T., and Noda, K., Chemical characterization of extracellular polysaccharide from Lactobacillus delbrueckii subsp. bulgaricus OLL1073R-1, Milchwissenschaft, 1998, vol. 53, pp. 443–446.

    CAS  Google Scholar 

  • Veckman, V., Miettinen, M., Pirhonen, J., et al., Streptococcus pyogenes and Lactobacillus rhamnosus differentially induce maturation and production of Th1-type cytokines and chemokines in human monocyte-derived dendritic cells, J. Leuk. Biol., 2004, vol. 75, pp. 764–771.

    CAS  Google Scholar 

  • Vedantam, G., Clark, A., Chu, M., et al., Clostridium difficile infection: toxins and non-toxin virulence factors, and their contributions to disease establishment and host response, Gut Microbes, 2012, vol. 3, no. 2, pp. 34–121.

    Google Scholar 

  • Voloshina, E.V., Zubova, S.V., Prokhorenko, S.V., et al., Comparison of the response of different chemotypes of lipopolysaccharides from Escherichia coli and Salmonella on synthesis of TNF-α and IL-6 by THP-1 macrophage cells, Med. Imunol., 2009, vol. 11, no. 6, pp. 509–514.

    Google Scholar 

  • Watanabe, T., Nishio, H., Tanigawa, T., et al., Probiotic Lactobacillus casei strain Shirota prevents indomethacin-induced small intestinal injury: involvement of lactic acid, Am. J. Physiol. Gastrointest. Liver Physiol., 2009, vol. 297, pp. 506–513.

    Google Scholar 

  • Wei, J., Dahl, J.L., Moulder, W., et al., Identification of a Mycobacterium tuberculosis gene that enhances mycobacterial survival in macrophages, J. Bacteriol., 2000, vol. 182, pp. 377–384.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei, Y., Zhang, Z., Liu, C., et al., Safety assessment of Bifidobacterium longum JDM301 based on complete genome sequences, World J. Gastroenterol., 2012, vol. 18, no. 5, pp. 479–488.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yadav, H., Jain, S., and Sinha, P.R., Antidiabetic effect of probiotic dahi containing Lactobacillus acidophilus and Lactobacillus casei in high fructose fed rats, Nutrition, 2006, vol. 23, pp. 62–68.

    PubMed  Google Scholar 

  • Yadav, H., Shalini, J., and Francesco, M., Probiotics mediated modulation of gut flora might be biotherapeutical approach obesity and type 2 diabetes, Metabolomics, 2011. http://dx.doi.org/10.4172/2153-0769.1000107e

    Google Scholar 

  • Yasuda, E., Serata, M., and Tomoyuki, S., Suppressive effect on activation of macrophages by Lactobacillus casei strain Shirota genes determining the synthesis of cell wall-associated polysaccharide, Appl. Environ. Microbiol., 2008, vol. 74, pp. 4746–4755.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Young, V.B., The intestinal microbiota in health and disease, Opin. Gastroenterol., 2012, vol. 28, pp. 63–69.

    CAS  Google Scholar 

  • Zacharevich, N.V., Osolodkin, D.I., Artamonova, I.I., et al., Signatures of the ATP-binding pocket as a basis for structural classification of the serine/threonine protein kinases of gram-positive bacteria, Proteins: Struct., Func., Bioinf., 2012, vol. 80, pp. 1363–1376.

    Google Scholar 

  • Zeithen, L.H., Christensen, H.R., and Frokiaer, H., Lactic acid bacteria inducing a weak interleukin-12 and tumor necrosis factor alpha response in human dendritic cells inhibit strongly stimulating lactic acid bacteria but act synergistically with gram-negative bacteria, Clin. Vaccine Immunol., 2006, vol. 13, pp. 365–375.

    Google Scholar 

  • Zhang, D., Souza, R. F., Anantharaman, V., et al., Polymorphic toxin systems: comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics, Biol. Direct., 2012, vol. 7. doi: 10.1186/1745-6150-7-18

  • Zhao, L., Lee, J.Y., and Hwang, D.H., Inhibition of pattern recognition receptor-mediated inflammation by bioactive phytochemicals, Nutr. Rev., 2011, vol. 69, pp. 310–320.

    PubMed  Google Scholar 

  • Zhu, L., Zhang, Y., The, J.S., et al., Characterization of mRNA interferases from Mycobacterium tuberculosis, J. Biol. Chem., 2006, vol. 281, no. 27, pp. 18638–18648.

    CAS  PubMed  Google Scholar 

  • Zughaier, S.M., Zimmer, S.M., Datta, A., et al., Differential induction of the Toll-like receptor 4 MyD88 dependent and independent signaling pathways by endotoxins, Infect. Immunol., 2005, vol. 73, pp. 2940–2950.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Fedorova.

Additional information

Original Russian Text © I.A. Fedorova, V.N. Danilenko, 2014, published in Uspekhi Sovremennoi Biologii, 2014, Vol. 134, No. 2, pp. 99–110.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, I.A., Danilenko, V.N. Immunogenic properties of a probiotic component of the human gastrointestinal tract microbiota. Biol Bull Rev 4, 457–466 (2014). https://doi.org/10.1134/S2079086414060036

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086414060036

Keywords

Navigation