Skip to main content
Log in

Trophic chains in the soil

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The trophic links of soil animals are extensively diverse but also flexible. Moreover, the feeding activity of large soil saprotrophs often cascades into a range of ecosystem-level consequences via the ecological engineering. An improved knowledge of the main sources of energy utilized by soil animals is needed for understanding the functional structure of soil animal communities and their participation in the global carbon cycling. Using published and original data, we consider the relative importance of dead organic matter and saprotrophic microorganisms as a basal energy source in the detritus-based food chains, the feeding of endogeic macrofauna on the stabilized soil organic matter, and the role of recent photosynthate in the energy budget of soil communities. Soil food webs are spatially and functionally compartmentalized, though the separation of food chains into bacteriaand fungi-based channels seems to be an oversimplification. The regulation of litter decomposition rates via top-down trophic interactions across more than one trophic level is only partly supported by experimental data, but mobile litter-dwelling predators play a crucial role in integrating local food webs within and across neighboring ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amelung, W., Brodowski, S., Sandhage-Hofmann, A., and Bol, R., Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter, Adv. Agron., 2008, vol. 100, pp. 155–250.

    CAS  Google Scholar 

  • Anderson, J.M., The enigma of soil animal species diversity, in Progress in Soil Zoology, Vanek, J., Ed., Prague: Academia, 1975, pp. 51–58.

    Google Scholar 

  • Andren, O., Brussaard, L., and Clarholm, M., Soil organism influence on ecosystem-level processes — bypassing the ecological hierarchy? Appl. Soil Ecol., 1999, vol. 11, pp. 177–188.

    Google Scholar 

  • Ballinger, A. and Lake, P.S., Energy and nutrient fluxes from rivers and streams into terrestrial food webs, Mar. Freshwater Res., 2006, vol. 57, pp. 15–28.

    Google Scholar 

  • Barois, I. and Lavelle, P., Changes in respiration rate and some physicochemical properties of a tropical soil during transit through Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta), Soil Biol. Biochem., 1986, vol. 18, pp. 539–541.

    Google Scholar 

  • Baylis, I.P., Cherrett, I.M., and Ford, I.B., A survey of the invertebrates feeding on living clover roots (Trifolium repens L.) using 32P as a radiotracer, Pedobiologia, 1986, vol. 29, pp. 201–208.

    Google Scholar 

  • Begon, M., Harper, J.L., and Townsend, C.R., Ecology: Individuals, Populations, and Communities, Blackwell Sci., 1996.

    Google Scholar 

  • Beklemishev, V.N., Classification of biocenotic (simphysiological) relationships, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1951, no. 56, pp. 3–30.

    Google Scholar 

  • Berg, M.P. and Bengtsson, J., Temporal and spatial variability in soil food web structure, Oikos, 2007, vol. 116, pp. 1789–1804.

    Google Scholar 

  • Berg, M., de Ruiter, P., Didden, W., Janssen, M., Schouten, T., and Verhoef, H., Community food web, decomposition and nitrogen mineralization in a stratified Scots pine forest soil, Oikos, 2001, vol. 94, pp. 130–142.

    CAS  Google Scholar 

  • Bocock, K.L. and Gilbert, O.J.W., The disappearance of leaf litter under different woodland conditions, Plant Soil, 1957, vol. 9, pp. 179–185.

    Google Scholar 

  • Bohlen, P.J., Scheu, S., Hale, C.M., McLean, M.A., Migge, S., Groffman, P.M., and Parkinson, D., Nonnative invasive earthworms as agents of change in northern temperate forests, Front. Ecol. Environ., 2004, vol. 2, pp. 427–435.

    Google Scholar 

  • Bonkowski, M., Villenave, C., and Griffiths, B., Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots, Plant Soil, 2009. V 321, pp. 213–233.

    CAS  Google Scholar 

  • Briones, M.J.I., Garnett, M.H., and Piearce, T.G., Earthworm ecological groupings based on 14C analysis, Soil Biol. Biochem., 2005, vol. 37, pp. 2145–2149.

    CAS  Google Scholar 

  • Briones, M.J.I. and Ineson, P., Use of 14C carbon dating to determine feeding behavior of enchytraeids, Soil Biol. Biochem., 2002, vol. 34, pp. 881–884.

    CAS  Google Scholar 

  • Brown, G.G., Barois, I., and Lavelle, P., Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains, Eur. J. Soil Biol., 2000, vol. 36, pp. 177–198.

    Google Scholar 

  • Cortez, J. and Bouche, M.B., Do earthworms eat living roots, Soil Biol. Biochem., 1992, vol. 24, pp. 913–915.

    Google Scholar 

  • Crotty, F.V., Blackshaw, R.P., and Murray, P.J., Tracking the flow of bacterially derived 13C and 15N through soil faunal feeding channels, Rapid Commun. Mass Spectrom., 2011, vol. 25, pp. 1503–1513.

    PubMed  CAS  Google Scholar 

  • Daufresne, T. and Loreau, M., Ecological stoichiometry, primary producer-decomposer interactions, and ecosystem persistence, Ecology, 2001, vol. 82, pp. 30693082.

    Google Scholar 

  • Dreyer, J., Hoekman, D., and Gratton, C., Lake-derived midges increase abundance of shoreline terrestrial arthropods via multiple trophic pathways, Oikos, 2012, vol. 121, pp. 252–258.

    Google Scholar 

  • Ettema, C.H. and Wardle, D.A., Spatial soil ecology, Trends Ecol. Evol., 2002, vol. 17, pp. 177–183.

    Google Scholar 

  • Frelich, L.E., Hale, C.M., Scheu, S., Holdsworth, A.R., Heneghan, L., Bohlen, P.J., and Reich, P.B., Earthworm invasion into previously earthworm-free temperate and boreal forests, Biol. Invasions, 2006, vol. 8, pp. 1235–1245.

    Google Scholar 

  • Gange, A., Arbuscular mycorrhizal fungi, Collembola and plant growth, Trends Ecol. Evol., 2000, vol. 15, pp. 369–372.

    PubMed  Google Scholar 

  • Geffen, K.G., van Berg, M.P., and Aerts, R., Potential macro-detritivore range expansion into the subarctic stimulates litter decomposition: a new positive feedback mechanism to climate change? Oecologia, 2011, vol. 167, pp. 1163–1175.

    PubMed  PubMed Central  Google Scholar 

  • Ghilarov, M.S., The key identification factors of soil parasites and their significance for rubber-bearing cultures, Zashch. Rast., 1937, no. 13, pp. 41–53.

    Google Scholar 

  • Ghilarov, M.S., Soil fauna and soil life, Pochvovedenie, 1939, no. 6, pp. 3–15.

    Google Scholar 

  • Ghilarov, M.S., Ratio of dimensions and number of soil invertebrates, Dokl. Akad. Nauk, 1944, no. 43, pp. 283–285.

    Google Scholar 

  • Ghilarov, M.S., On the interrelations between soil dwelling invertebrates and soil microorganisms, in Soil Organisms, Doeksen, J. and van der Drift, J., Eds., Amsterdam, 1963, pp. 255–259.

    Google Scholar 

  • Ghilarov, M.S., Soil layer of land biocenosises, Usp. Sovrem. Biol., 1968, vol. 66, pp. 121–135.

    Google Scholar 

  • Ghilarov, M.S., Some general statements on ecology of terrestrial invertebrates, Zh. Obshch. Biol., 1973, vol. 34, pp. 795–806.

    Google Scholar 

  • Ghilarov, M.S. and Chernov, Yu.I., Soil invertebrates in community composition of moderate climate zone, in Resursy biosfery (Biosphere Resources), Leningrad: Nauka, 1975, pp. 218–240.

    Google Scholar 

  • Gladyshev, M.I., Arts, M.T., and Sushchik, N.N., Preliminary estimates of the export of omega-3 highly unsaturated fatty acids (EPA + DHA) from aquatic to terrestrial ecosystems, in Lipids in Aquatic Ecosystems, Arts, M.T., Brett, M.T., and Kainz, M.J. Eds., New York: Springer, 2009, pp. 179–209.

    Google Scholar 

  • Goncharov, A.A., Kuznetsov, A.I., D’yakov, L.M., and Tiunov, A.V., Trophic links of soil arthropods and aquatic ecosystems of Omsk Nature Reserve (according to isotope data analysis), Izv. Penz. Gos. Pedagog. Univ. im V.G. Belinskogo, 2011, no. 25, pp. 337–344.

    Google Scholar 

  • Gratton, C., Donaldson, J., and van der Zanden, M.J., Ecosystem linkages between lakes and the surrounding terrestrial landscape in northeast Iceland, Ecosystems, 2008, vol. 11, pp. 764–774.

    Google Scholar 

  • Gunn, A. and Cherrett, J.M., The exploitation of food resources by soil meso- and macroinvertebrates, Pedobiologia, 1993, vol. 37, pp. 303–327.

    Google Scholar 

  • Halaj, J. and Wise, D.H., Impact of a detrital subsidy on trophic cascades in a terrestrial grazing food web, Ecology, 2002, vol. 83, pp. 3141–3151.

    Google Scholar 

  • Hassall, M., Adl, S., Berg, M., Griffiths, B., and Scheu, S., Soil fauna-microbe interactions: towards a conceptual framework for research, Eur. J. Soil Biol., 2006, vol. 42, pp. 54–60.

    Google Scholar 

  • Hattenschwiler, S., Tiunov, A.V., and Scheu, S., Biodiversity and litter decomposition in terrestrial ecosystems, Annu. Rev. Ecol. Syst., 2005, vol. 36, pp. 191–218.

    Google Scholar 

  • Hawlena, D., Strickland, M.S., Bradford, M.A., and Schmitz, O.J., Fear of predation slows plant-litter decomposition, Science, 2012, vol. 336, pp. 1434–1438.

    PubMed  CAS  Google Scholar 

  • Hedlund, K. and Sjogren Ohrn, M., Tritrophic interactions in a soil community enhance decomposition rates, Oikos, 2000, vol. 88, pp. 585–591.

    Google Scholar 

  • Hendrix, P.F., Callaham, M.A., Drake, J.M., Huang, C.Y., James, S.W., Snyder, B.A., and Zhang, W.X., Pandora’s box contained bait: The global problem of introduced earthworms, Annu. Rev. Ecol. Syst., 2008, vol. 39, pp. 593–613.

    Google Scholar 

  • Hunt, H.W., Coleman, D.C., Ingham, E.R., Ingham, R.E., Elliott, E.T., Moore, J.C., Rose, S.L., Reid, C.P.P., and Morley, C.R., The detrital food web in a shortgrass prairie, Biol. Fertil. Soils, 1987, vol. 3, pp. 57–68.

    Google Scholar 

  • Hyodo, F., Tayasu, I., Konate, S., Tondoh, J.E., Lavelle, P., and Wada, E., Gradual enrichment of 15N with humification of diets in a below-ground food web: relationship between 15N and diet age determined using 14C, Funct. Ecol., 2008, vol. 22, pp. 516–522.

    Google Scholar 

  • Hyodo, F., Tayasu, I., and Wada, E., Estimation of the longevity of C in terrestrial detrital food webs using radiocarbon (14C): how old are diets in termites? Funct. Ecol., 2006, vol. 20, pp. 385–393.

    Google Scholar 

  • Kajak, A., The role of soil predators in decomposition process, Eur. J. Entomol., 1995, vol. 92, pp. 573–780.

    Google Scholar 

  • Kampichler, C. and Bruckner, A., The role of microarthropods in terrestrial decomposition: a meta-analysis of 40 years of litterbag studies, Biol. Rev., 2009, vol. 84, pp. 375–389.

    PubMed  Google Scholar 

  • Kemmitt, S.J., Lanyon, C.V., Waite, I.S., Wen, Q., Addiscott, T.M., Bird, N.R.A., O’Donnell, A.G., and Brookes, P.C., Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass — a new perspective, Soil Biol. Biochem., 2008, vol. 40, pp. 61–73.

    CAS  Google Scholar 

  • Kleber, M., What is recalcitrant soil organic matter? Environ. Chem., 2010, vol. 7, pp. 320–332.

    CAS  Google Scholar 

  • Kurcheva, G.F., Rol’ pochvennykh zhivotnykh v razlozhenii i gumifikatsii rastitel’nykh ostatkov (Role of Soil Fauna in Decomposition and Humification of the Plant Litter), Moscow: Nauka, 1971.

    Google Scholar 

  • Kuzyakov, Ya.V., Isotope-marker analysis of air carbon translocation by the plants to the soil (literature survey), Pochvovedenie, 2001, no. 1, pp. 36–51.

    Google Scholar 

  • Kuzyakov, Y., Friedel, J.K., and Stahr, K., Review of mechanisms and quantification of priming effects, Soil Biol. Biochem., 2000, vol. 32, pp. 1485–1498.

    CAS  Google Scholar 

  • Laakso, J. and Setala, H., Population- and ecosystem-level effects of predation on microbial-feeding nematodes, Oecologia, 1999, vol. 120, pp. 279–286.

    Google Scholar 

  • Lavelle, P. and Gilot, C., Priming effects of macroorganisms on microflora: A key process of soil function? in Beyond the Biomass, Ritz, K., Dighton, J., and Giller, K.E., Eds., New York: Wiley, 1994, pp. 173–180.

    Google Scholar 

  • Lindahl, B.O., Taylor, A.F.S., and Finlay, R.D., Defining nutritional constraints on carbon cycling in boreal forests — towards a less “phytocentric” perspective, Plant Soil, 2002, vol. 242, pp. 123–135.

    CAS  Google Scholar 

  • Lukesova, A. and Frouz, J., Soil and freshwater microalgae as a food source for invertebrates in extreme environments, in Algae and Cyanobacteria in Extreme Environments, Seckbach, J., Ed., 2007, pp. 265–284.

    Google Scholar 

  • Maraun, M., Erdmann, G., Fischer, B.M., Pollierer, M.M., Norton, R.A., Schneider, K., and Scheu, S., Stable isotopes revisited: Their use and limits for oribatid mite trophic ecology, Soil Biol. Biochem., 2011, vol. 43, pp. 877–882.

    CAS  Google Scholar 

  • Martin, A., Cortez, J., Barois, I., and Lavelle, P., The production of intestinal mucus by earthworms: a key process in their interactions with the soil microflora, Rev. d’Ecol. Biol. Sol, 1987, vol. 24, pp. 549–558.

    Google Scholar 

  • Martin, A., Mariotti, A., Balesdent, J., and Lavelle, P., Soil organic matter assimilation by a geophagous tropical earthworm based on 13C measurements, Ecology, 1992, vol. 73, pp. 118–128.

    Google Scholar 

  • McGlynn, T.P. and Poirson, E.K., Ants accelerate litter decomposition in a Costa Rican lowland tropical rain forest, J. Trop. Ecol., 2012, vol. 28, pp. 437–443.

    Google Scholar 

  • Migge-Kleian, S., McLean, M.A., Maerz, J.C., and Heneghan, L., The influence of invasive earthworms on indigenous fauna in ecosystems previously uninhabited by earthworms, Biol. Invasions, 2006, vol. 8, pp. 1275–1285.

    Google Scholar 

  • Mikola, J., Bardgett, R.D., and Hedlund, K., Biodiversity, ecosystem functioning and soil decomposer food webs, in Biodiversity and Ecosystem Functioning: Synthesis and Perspectives, Loreau, M., Naeem, S., and Inchausti, P., Eds., Oxford: Oxford Univ. Press, 2002, pp. 169–180.

    Google Scholar 

  • Mikola, J. and Setala, H., No evidence of trophic cascades in an experimental microbial-based food web, Ecology, 1998, vol. 79, pp. 153–164.

    Google Scholar 

  • Moore, J.C., Berlow, E.L., Coleman, D.C., de Ruiter, P.C., Dong, Q., Hastings, A., Johnson, N.C., McCann, K.S., Melville, K., Morin, P.J., Nadelhoffer, K., Rosemond, A.D., Post, D.M., Sabo, J.L., Scow, K.M., Vanni, M.J., and Wall, D.H., Detritus, trophic dynamics and biodiversity, Ecol. Lett., 2004, vol. 7, pp. 584–600.

    Google Scholar 

  • Moore, J.C. and de Ruiter, P.C., Compartmentalization of resource utilization within soil ecosystems, in Multitrophic Interactions in Terrestrial Systems, Gange, A.C. and Brown, V.K., Eds., Oxford: Blackwell Sci., 1997, pp. 375–393.

    Google Scholar 

  • Morris, S.J., Spatial distribution of fungal and bacterial biomass in southern Ohio hardwood forest soils: fine scale variability and microscale patterns, Soil Biol. Biochem., 1999, vol. 31, pp. 1375–1386.

    CAS  Google Scholar 

  • Ostle, N., Briones, M.J.I., Ineson, P., Cole, L., Staddon, P., and Sleep, D., Isotopic detection of recent photosynthate carbon flow into grassland rhizosphere fauna, Soil Biol. Biochem., 2007, vol. 39, pp. 768–777.

    CAS  Google Scholar 

  • Paetzold, A., Lee, M., and Post, D.M., Marine resource flows to terrestrial arthropod predators on a temperate island: the role of subsidies between systems of similar productivity, Oecologia, 2008, vol. 157, pp. 653–659.

    PubMed  Google Scholar 

  • Paetzold, A., Schubert, C.J., and Tockner, K., Aquatic terrestrial linkages along a braided-river: Riparian arthropods feeding on aquatic insects, Ecosystems, 2005, vol. 8, pp. 748–759.

    Google Scholar 

  • Perel’, T.S., Living forms of Lumbricidae, Zh. Obshch. Biol., 1975, vol. 36, pp. 189–202.

    PubMed  Google Scholar 

  • Persson, T. and Lohm, U., Energetical significance of the annelids and arthropods in a Swedish grassland soil, Ecol. Bull. (Stockholm), 1977, vol. 23, pp. 1–211.

    Google Scholar 

  • Petersen, H. and Luxton, M.A., A comparative analysis of soil fauna populations and their role in decomposition processes, Oikos, 1982, vol. 39, pp. 287–388.

    Google Scholar 

  • Pimm, S.L., Food Webs, London: Chapman and Hall, 1982.

    Google Scholar 

  • Pokarzhevskii, A.D., Gongal’skii, K.B., Zaitsev, A.S., and Savin, F.A., Prostranstvennaya ekologiya pochvennykh zhivotnykh (Spatial Ecology of Soil Fauna), Moscow: KMK, 2007.

    Google Scholar 

  • Pokarzhevskii A.D., van Straalen N.M., Zaboev D.P., Zaitsev A.S. Microbial links and element flows in nested detrital food-webs, Pedobiologia, 2003, vol. 47, pp. 213–224.

    Google Scholar 

  • Polis, G.A., Anderson, W.B., and Holt, R.D., Towards an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs, Annu. Rev. Ecol., Evol., Syst., 1997, vol. 28, pp. 289–316.

    Google Scholar 

  • Pollierer, M.M., Dyckmans, J., Scheu, S., and Haubert, D., Carbon flux through fungi and bacteria into the forest soil animal food web as indicated by compound specific 13C fatty acid analysis, Funct. Ecol., 2012, vol. 26, pp. 978–990.

    Google Scholar 

  • Pollierer, M.M., Langel, R., Korner, C., Maraun, M., and Scheu, S., The underestimated importance of belowground carbon input for forest soil animal food webs, Ecol. Lett., 2007, vol. 10, pp. 729–736.

    PubMed  Google Scholar 

  • Pollierer, M.M., Langel, R., Scheu, S., and Maraun, M., Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C), Soil Biol. Biochem., 2009, vol. 41, pp. 1221–1226.

    CAS  Google Scholar 

  • Powers, J.S., Montgomery, R.A., Adair, E.C., Brearley, F.Q., Dewalt, S.J., Castanho, C.T., Chave, J., Deinert, E., Ganzhorn, J.U., Gilbert, M.E., Gonzalez-Iturbe, J.A., Bunyavejchewin, S., Grau, H.R., Harms, K.E., Hiremath, A., Iriarte-Vivar, S., Manzane, E., de Oliveira, A.A., Poorter, L., Ramanamanjato, J.B., Salk, C., Varela, A., Weiblen, G.D., and Lerdau, M.T., Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient, J. Ecol., 2009, vol. 97, pp. 801–811.

    CAS  Google Scholar 

  • Power, M.E. and Rainey, W.E., Food webs and resource sheds: towards spatially delimiting trophic interactions, in The Ecological Consequences of Environmental Heterogeneity, Hutchings, M.J., John, E.A., and Stewart, A.J.A., Eds., Oxford: Blackwell Sci., 2000, pp. 291–314.

    Google Scholar 

  • Prescott, C.E., Do rates of litter decomposition tell us anything we really need to know? For. Ecol. Manage., 2005, vol. 220, pp. 66–74.

    Google Scholar 

  • Prescott, C.E., Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry, 2010, vol. 101, pp. 133–149.

    CAS  Google Scholar 

  • Putten, W.H. van der Bardgett, R.D., de Ruiter, P.C., Hol, W.H.G., Meyer, K.M., Bezemer, T.M., Bradford, M.A., Christensen, S., Eppinga, M.B., Fukami, T., Hemerik, L., Molofsky, J., Schadler, M., Scherber, C., Strauss, S.Y., Vos, M., and Wardle, D.A., Empirical and theoretical challenges in aboveground-belowground ecology, Oecologia, 2009, vol. 161, pp. 1–14.

    PubMed  PubMed Central  Google Scholar 

  • Remen, C., Persson, T., Finlay, R., and Ahlstrom, K., Responses of oribatid mites to tree girdling and nutrient addition in boreal coniferous forests, Soil Biol. Biochem., 2008, vol. 40, pp. 2881–2890.

    CAS  Google Scholar 

  • Rooney, N., McCann, K., Gellner, G., and Moore, J.C., Structural asymmetry and the stability of diverse food webs, Nature, 2006, vol. 442, pp. 265–269.

    PubMed  CAS  Google Scholar 

  • Saetre, P. and Baath, E., Spatial variation and patterns of soil microbial community structure in a mixed sprucebirch stand, Soil Biol. Biochem., 2000, vol. 32, pp. 909–917.

    CAS  Google Scholar 

  • Sazonova, O.N., Outflow of organic matter by mosquito in relief declivity to plakor, in Mater. soveshch. “Sredoobrazuyushchaya deyatel’nost’ zhivotnykh,” 17–18 dekabrya 1970 g. (Proc. Meeting “Environment-Forming Activity of Animals,” December 17–18, 1970), Moscow: Mosk. Gos. Univ., 1970, pp. 65–71.

    Google Scholar 

  • Scheu, S., Plants and generalist predators as links between the below-ground and above-ground system, Basic Appl. Ecol., 2001, vol. 2, pp. 3–13.

    Google Scholar 

  • Scheu, S. and Falca, M., The soil food web of two beech forests (Fagus sylvatica) of contrasting humus type: stable isotope analysis of a macro- and a mesofauna-dominated community, Oecologia, 2000, vol. 123, pp. 285–296.

    Google Scholar 

  • Scheu, S. and Schaefer, M., Bottom-up control of the soil macrofauna community in a beechwood on limestone: manipulation of food resources, Ecology, 1998, vol. 79, no. 5, pp. 1573–1585.

    Google Scholar 

  • Scheunemann, N., Scheu, S., and Butenschoen, O., Incorporation of decade old soil carbon into the soil animal food web of an arable system, Appl. Soil Ecol., 2010, vol. 46, pp. 59–63.

    Google Scholar 

  • Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., and Trumbore, S.E., Persistence of soil organic matter as an ecosystem property, Nature, 2011, vol. 478, pp. 49–56.

    PubMed  CAS  Google Scholar 

  • Shilenkova, O.L. and Tiunov, A.V., Influence of free carbon on abundance of collembolan and destruction rate of litter: laboratory experiment, Izv. Penz. Gos. Pedagog. Univ. im V.G. Belinskogo, 2011, no. 25, pp. 478–483.

    Google Scholar 

  • Shtina, E.A., Interaction of soil algae and invertebrates, in Razlozhenie rastitel’nykh ostatkov v pochve (Litter Decomposition in Soil), Moscow: Nauka, 1985, pp. 90–104.

    Google Scholar 

  • Shurin, J.B., Gruner, D.S., and Hillebrand, H., All wet or dried up? Real differences between aquatic and terrestrial food webs, Proc. R. Soc. B, 2006, vol. 273, pp. 1–9.

    PubMed  PubMed Central  Google Scholar 

  • Soe, A.R.B. and Buchmann, N., Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest, Tree Physiol., 2005, vol. 25, pp. 1427–1436.

    PubMed  CAS  Google Scholar 

  • Spain, A.V., Saffigna, P.G., and Wood, A.W., Tissue carbon source for Pontoscolex corethrurus (Oligochaeta: Glossoscolecidae) in a sugarcane ecosystem, Soil Biol. Biochem., 1990, vol. 22, pp. 703–706.

    CAS  Google Scholar 

  • Sterner, R.W. and Elser, J.J., Ecological Stoichiometry: The Biology of Elements from Molecules to Biosphere, Princeton: Princeton Univ. Press, 2002.

    Google Scholar 

  • Strickland, M.S., Wickings, K., and Bradford, M.A., The fate of glucose, a low molecular weight compound of root exudates, in the belowground foodweb of forests and pastures, Soil Biol. Biochem., 2012, vol. 49, pp. 23–29.

    CAS  Google Scholar 

  • Striganova, B.R., Pitanie pochvennykh saprofagov (Nutrition of Soil Saprophages), Moscow: Nauka, 1980.

    Google Scholar 

  • Striganova, B.R., Systemic analysis of biocenotic links in soil communities, in Chteniya pamyati akademika M.S. Gilyarova (Readings in the Memory of M.S. Ghilarov), Moscow: KMK, 2006, pp. 16–38.

    Google Scholar 

  • Swift, M.J., Heal, O.W., and Anderson, J.M., Decomposition in Terrestrial Ecosystems, Oxford: Blackwell, 1979.

    Google Scholar 

  • Tiunov, A.V., Mechanism of influence of the earthworms on other components of soil biota, in Chteniya pamyati akademika M.S. Gilyarova (Readings in the Memory of M.S. Ghilarov), Moscow: KMK, 2008, pp. 49–86.

    Google Scholar 

  • Trigo, D. and Lavelle, P., Changes in respiration rate and some physicochemical properties of soil during gut transit through Allolobophora molleri (Lumbricidae, Oligochaeta), Biol. Fertil. Soils, 1993, vol. 15, pp. 85–188.

    Google Scholar 

  • Tiunov, A.V. and Scheu, S., Carbon availability controls the growth of detritivores (Lumbricidae) and their effect on nitrogen mineralization, Oecologia, 2004, vol. 138, pp. 83–90.

    PubMed  Google Scholar 

  • Visser, S., Role of soil invertebrates in determining the composition of soil microbial communities, in Ecological Interactions in Soil, Fitter, A.H., Atkinson, D., Read, D.J., and Usher, M.B., Eds., Oxford: Blackwell Sci., 1985, pp. 297–317.

    Google Scholar 

  • Wall, D.H., Bradford, M.A., John, M.G.S., Trofymow, J.A., et al., Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent, Global Change Biol., 2008, vol. 14, pp. 2661–2677.

    Google Scholar 

  • Wardle, D.A., Communities and ecosystems: linking the aboveground and belowground components. Princeton: Princeton Univ. Press, 2002.

    Google Scholar 

  • Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setala, H., Putten, W.H., and van der Wall, D.H., Ecological linkages between aboveground and belowground biota, Science, 2004, vol. 304, pp. 1629–1633.

    PubMed  CAS  Google Scholar 

  • Wardle, D.A., Karl, B.J., Beggs, J.R., Yeates, G.W., Williamson, W.M., and Bonner, K.I., Determining the impact of scale insect honeydew, and invasive wasps and rodents, on the decomposer subsystem in a New Zealand beech forest, Biol. Invasions, 2010, vol. 12, pp. 2619–2638.

    Google Scholar 

  • Wardle, D.A. and Yeates, G.W., The dual importance of competition and predation as regulatory forces in terrestrial ecosystems: evidence from decomposer foodwebs, Oecologia, 1993, vol. 93, pp. 303–306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Goncharov.

Additional information

Original Russian Text © A.A. Goncharov, A.V. Tiunov, 2013, published in Zhurnal Obshchei Biologii, 2013, Vol. 74, No. 6, pp. 450–462.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharov, A.A., Tiunov, A.V. Trophic chains in the soil. Biol Bull Rev 4, 393–403 (2014). https://doi.org/10.1134/S207908641405003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207908641405003X

Keywords

Navigation