Skip to main content
Log in

Profile of the Plasma Catecholamines of Sexually Mature Rats Exposed to a Combination of Factors of Different Natures

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

Changes in the catecholamines concentration in plasma depend on the rhythm of the external light signal. Light desynchronosis has the strongest influence on the change in the dopamine concentration in the blood plasma. The combined effect of the physical factor, i.e., prolonged changes in the light regimen, and the chemical factor (single, acute poisoning with a neurotoxicant) results in the activation of exogenous and endogenous pathways for the regulation of the biological rhythms of catecholamine secretion into the blood plasma. The most pronounced changes were observed in blackout conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Anisimov, V.N., Vinogradova, I.A., Bukalev, A.V., et al., Light-induced desynchronosis and risk of malignant tumors in laboratory animals: state of the problem, Vopr. Onkol., 2013, vol. 59, no. 3, pp. 302–313.

    CAS  PubMed  Google Scholar 

  2. Anisimov, V.N., Accelerated aging syndrome caused by carcinogenic environmental factors, Ross. Fiziol. Zh. im. I.M. Sechenova, 2010, vol. 96, no. 8, pp. 817–833.

    CAS  PubMed  Google Scholar 

  3. Batotsyrenova, E.G., Kashuro, V.A., Ivanov, M.B., et al., Dynamics of energy metabolism indicators in conditions of desynchronosis, Acta Nat., 2016, suppl. 1, p. 182.

  4. Batotsyrenova, E.G., Kostrova, T.A., and Zhilyaeva, E.Kh., Changes in the antioxidant system during intoxication with sodium thiopental and changes in the circadian rhythm, Acta Nat., 2016, suppl. 1, p. 189.

  5. Bukalev, A.V., Vinogradova, I.A., Zabezhinskii, M.A., et al., Light pollution increases in the morbidity and mortality rates from different causes in male rats, Adv. Gerontol., 2012, vol. 2, no. 4, pp. 312–318.

    Article  Google Scholar 

  6. Vasendin, D.V., Biomedical effects of melatonin: the results and prospective studies, Vestn. Ross. Voen.-Med. Akad., 2016, no. 3 (55), pp. 171–178.

  7. Gorskii, A.A., Pochtareva, E.S., Pilishenko, V.A., et al., The labor conditions and occupational diseases of workers in Russian Federation, Zdorov’e Naseleniya Sreda Obitaniya, 2014, vol. 2, no. 251, pp. 8–11.

    Google Scholar 

  8. Kashuro, V.A., Batotsyrenova, E.G., and Ivanov, M.B., The response of the antioxidant system to a change of light conditions, Acta Nat., 2019, suppl. 2, p. 196.

  9. Kashuro, V.A., Glushkov, S.I., Kutsenko, S.A., et al., State of the system of glutathione and lipid peroxidation in tissues of the liver and kidneys of rats with acute cyclophosphamide poisoning, Toksikol. Vestn., 2003, no. 4, pp. 25–30.

  10. Kashuro, V.A., Dolgo-Saburov, V.B., Basharin, V.A., et al., The mechanisms of bioenergy disorders and optimization of the approaches to its pharmacotherapy, Biomed. Zh. Medline.ru, 2010, vol. 11, pp. 611–634.

  11. Kashuro, V.A., Dolgo-Saburov, V.B., Dagaev, S.G., et al., The role of the antioxidant system and lipid peroxidation in the pathogenesis of thiopental coma, Khim. Biol. Bezop., 2012, suppl., pp. 3–7.

  12. Kostrova, T.A., Shchepetkova, K.M., Batotsyrenova, E.G., et al., Concentration of neurotrophic factors in the long-term period after intoxication by neurotoxicants in conditions of jetlag, Kurortnaya Med., 2018, no. 3, pp. 51–53.

  13. Lukovnikova, L.V., Sidorin, G.I., and Alikbaeva, L.A., Danger of acute and chronic poisoning with organic mercury compounds, Prof. Klin. Med., 2013, vol. 47, no. 2, pp. 16–19.

    Google Scholar 

  14. Novikov, V.S., Soroko, S.I., and Shustov, E.B., Dezadaptatsionnye sostoyaniya cheloveka pri ekstremal’nykh vozdeistviyakh i ikh korrektsiya (Deadaptation States of a Man in Extreme Conditions and Their Correction), St. Petersburg: Politekhnika-Print, 2018.

  15. Rapoport, S.I., Melatonin: perspektivy primeneniya v klinike (Prospective Use of Melatonin in Clinical Practice), Moscow: IMA-Press, 2012.

  16. Shvetsov, A.V., Dyuzhikova, N.A., Savenko, Yu.N., et al., Effect of experimental coma on the expression of bcl-2 and caspase-3,9 proteins in rat brain, Byull. Eksp. Biol. Med., 2015, vol. 160, no. 8, pp. 178–181.

    Article  Google Scholar 

  17. Shvetsov, A.V., Batotsyrenova, E.G., Stepanov, S.V., et al., The study of markers of structural and functional disorders of the central nervous system in rats using an experimental model of thiopental coma, Neirokhimiya, 2016, vol. 33, no. 4, pp. 332–336.

    Google Scholar 

  18. Aendt, J., Melatonin, circadian rhythms, and sleep, N. Engl. J. Med., 2000, vol. 343, no. 5, pp. 1114–1116.

    Article  Google Scholar 

  19. Akerstedt, T. and Lennart, L., Circadian rhythms in the secretion of cortisol, adrenaline and noradrenalin, Eur. J. Clin. Invest., 1978, vol. 8, pp. 57–58.

    Article  CAS  PubMed  Google Scholar 

  20. Brancaccio, M., Enoki, R., Mazuski, C.N., et al., Network-mediated encoding of circadian time: the suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back, J. Neurosci., 2014, vol. 34, no. 46, pp. 15192–15199.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brzezinski, A., Mechanisms of disease: melatonin in humans, N. Engl. J. Med., 1997, vol. 16, pp. 186–195.

    Article  Google Scholar 

  22. Bubenik, G.A., Thirty four years since the discovery of gastrointestinal melatonin, J. Physiol. Pharmacol., 2008, vol. 59, pp. 33–51.

    PubMed  Google Scholar 

  23. Bühler, H.U., Prada, M.DA., Haefely, W., et al., Plasma adrenaline, noradrenaline and dopamine in man and different animal species, J. Physiol., 1978, vol. 276, pp. 311–320.

  24. Hampp, G., Ripperger, J.A., Houben, T., et al., Regulation of monoamine oxidase A by circadian-clock components implies clock influence on mood, Curr Biol., 2008, vol. 18, no. 9, pp. 678–683.

    Article  CAS  PubMed  Google Scholar 

  25. Linsell, C.R., Lightman, S.L., Mullen, P.E., et al., Circadian rhythms of epinephrine and norepinephrine in man, J. Clin. Endocrinol. Metab., 1985, vol. 60, no. 6, pp. 1210–1215.

    Article  CAS  PubMed  Google Scholar 

  26. Melamed, E., Frucht, Y., Vidauri, J., et al., Effect of postnatal light deprivation on the ontogenesis of dopamine neurons in rat retina, Dev. Brain Res., 1986, vol. 26, pp. 280–284.

    Article  CAS  Google Scholar 

  27. Milev, N.B. and Reddy, A.B., Circadian redox oscillations and metabolism, Trends Endocrinol. Metab., 2015, vol. 26, no. 8, pp. 430–437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nishimuro, T., Nishio, I., Ohtani, H., et al., Plasma catecholamines determination using high pressure luquid chromatography and their roles in blood pressure regulation and experimental hypertension in rats, Jpn. Circ. J., 1979, vol. 43, pp. 855–865.

    Article  Google Scholar 

  29. Reddy, A.B., Rhee, S.-G., and Milev, N.B., Cellular timekeeping: it’s redox o’clock, Cold Spring Harb. Perspect. Biol., 2018, vol. 10, pp. 1–31.

    Google Scholar 

  30. Richter, J.A. and Holtman, J.R., Barbiturates: their in vivo effects and potential biochemical mechanisms, Prog. Neurobiol., 1982, vol. 18, no. 4, pp. 275–319.

    Article  CAS  PubMed  Google Scholar 

  31. Shelke, R.J., Laksnmana, M.K., Ramamohan, Y., and Raju, T.R., Levels of dopamine and noradrenaline in the developing retina—effect of light deprivation, Int. J. Dev. Neurosci., 1997, vol. 15, no. 1, pp. 139–143.

    Article  CAS  PubMed  Google Scholar 

  32. Sowers, J.R. and Vlachakis, N., Circadian variation in plasma dopamine levels in man, Endocrinol. Invest., 1984, vol. 7, pp. 341–345.

    Article  CAS  Google Scholar 

  33. Wirz-Justice, A., Da Prada, M., and Reme, C., Circadian rhythm in retinal dopamine, Neurosci. Lett., 1984, vol. 45, pp. 21–25.

    Article  CAS  PubMed  Google Scholar 

  34. Wu, Y.L., Tang, D.B., Liu, N., et al., Reciprocal regulation between the circadian clock and hypoxia signaling at the genome level in mammals, Cell Metab., 2017, vol. 25, pp. 1–13.

    Article  Google Scholar 

  35. Zawilska, J.B., Bednarek, A., Berezińska, M., and Nowak, J.Z., Rhythmic changes in metabolism of dopamine in the chick retina: the importance of light versus biological clock, J. Neurochem., 2003, vol. 84, pp. 717–724.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author acknowledges Doctor of Medicine, Associate Professor V.A. Kashuro, the Head of the Laboratory of Biochemical Toxicology and Pharmacology of Golikov Research Center of Toxicology, Russia, and Doctor of Medicine, Associate Professor M.B. Ivanov for significant comments and valuable advice in the conduction of the experiment and the formatting of the article.

Funding

The study was conducted at the Golikov National Center of Cardiology and Therapy within the government contract on the research topic, “Development of approaches to the management of functional state impairments upon neurointoxication under changes of light regimens.” The state registration number for Research, Development, and Technological Work is АААА-А18-118031290067-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Batotsyrenova.

Ethics declarations

Conflict of interests. The author declares that she has no conflict of interests.

Statement on animal welfare. The animals were managed in accordance with the “Principles of Good Laboratory Practice” of the All-Union State Standard requirements, no. 33044-2014, August 1, 2015. The rules and norms of humane management of experimental animals were followed during the experiments. All animal experiments were performed in correspondence with the “Guide for the Care and Management of Laboratory Animals. Rules of Care and Management of Laboratory Rodents and Rabbits” and “Guide for the Care and Management of Laboratory Animals. Rules of Interior Equipment and Procedure Organization,” All-Union State Standard requirements no. 33216-2014 and 33215-2014, respectively.

Additional information

Translated by E. Sherstyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batotsyrenova, E.G. Profile of the Plasma Catecholamines of Sexually Mature Rats Exposed to a Combination of Factors of Different Natures. Adv Gerontol 11, 132–138 (2021). https://doi.org/10.1134/S207905702102003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207905702102003X

Keywords:

Navigation