Skip to main content
Log in

Taxonomic and Ethnical Dispersion of the Phenomenon of Pineal Concretions in the Gerontological Context

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

The pineal gland (PG), or epiphysis, is involved in the organization of biological rhythms and adaptive reactions of the organism by the hormone melatonin. It is shown that various factors can influence the morphology and functional activity of the gland. Calcified concretions (corpora arenacea, brain sand) are unique biomineral structures of the PG; the causes of their formation and their possible functional significance have been unclear until now. To date, concrements have been found in four species of birds and 21 mammalian species, as well as in humans; they are absent in fish, amphibians, and reptiles. In this review, we have collected the available literature data on the composition, mechanisms of formation, and possible factors affecting the accumulation of concretions in the epiphysis. Although the generally accepted point of view is that the accumulation of pineal calcium deposits is age-dependent, the available data on PG mineralization lead to the conclusion that there is most likely a multifactorial mechanism of concrement formation. In addition, the nature and crystallinity of the inorganic tissue of the pineal concretions suggest that corpora arenacea, is a regulated and physiological type of petrification rather than a pathological type. The existence of contradictory data on the connection between the formation of brain sand and the change in the functional activity of the PG during seasonal endocrine changes and in the aging process requires the study of deposits and in-depth investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Gul’kov, A.N., Reva, I.V., Reva, G.V., et al., Corpora arenacea of the epiphysis with cerebral ischemia, Fundam. Issled., 2014, vol. 4, no. 10, pp. 654–659.

    Google Scholar 

  2. Zvereva, E.E., Theory and formation of corpora arenacea in the pineal gland: a literature review, Krymsk. Zh. Eksp. Klin. Med., 2016, vol. 6, no. 1, pp. 32–37.

    Google Scholar 

  3. Ivanov, S.V., Age morphology of the human epiphysis: study in vivo, Usp. Gerontol., 2007, vol. 20, no. 2, pp. 60–65.

    CAS  Google Scholar 

  4. Ivanov, S.V. and Kostoglodov, Yu.K., Morphological and chronoepidemiological basis for lunasensory pineal gland function in the context of the redumer hypothesis of aging, Adv. Gerontol., 2011, vol. 1, no. 3, pp. 220–222.

    Article  Google Scholar 

  5. Karmanova, L.V., Age-related morphological features of the pineal gland of the inhabitants of Syktyvkar city (Komi Republic), Zdorov’e Chel. Severe, 2009, no. 2, pp. 24–25.

  6. Kravchuk, E.I. and Kravchuk, V.I., Morfometricheskaya vozrastnaya transformatsiya shishkovidnogo tela cheloveka (Morphometric Age-Related Transformation of the Human Pineal Gland), Tver, 1956.

    Google Scholar 

  7. Kuzemtseva, L.V., Morphology of the pineal gland in pigs during ontogenesis and in post-vaccination stress, Cand. Sci. (Vet.) Dissertation, Izhevsk: Ural. Gos. S-kh. Akad., 2004.

  8. Paskalev, D., Radoinova, D., and Galunska, B., Doctor Zakharina Dimitrova (1873–1940): a pioneer in the study of the epiphysis microstructure, Nefrologiya, 2011, vol. 15, no. 2, pp. 115–118.

    Google Scholar 

  9. Sergina, S.N., Ilyukha, V.A., Uzenbaeva, L.B., et al., Morphofunctional activity of the pineal gland in members of the Canidae family depending on the season, Materialy XXIII s”ezda Fiziologicheskogo obshchestva im. I.P. Pavlova (Proc. XXIII Congr. of Pavlov Physiological Society), Voronezh: Istoki, 2017, pp. 2473–2475.

  10. Fokin, E.I., Morphology of human pineal gland in late postnatal ontogenesis, Alzheimer’s disease, and schizophrenia, Cand. Sci. (Med.) Dissertation, Moscow, 2008.

  11. Khelimskii, A.M., The histophysiology of colloid and corpora arenacea of the pineal gland: a histochemical study, Probl. Endokrinol., 1969, vol. 15, no. 5, pp. 50–54.

    CAS  Google Scholar 

  12. Abbassioun, K., Aarabi, B., and Zarabi, M., A comparative study of physiologic intracranial calcifications, Pahlavi Med. J., 1978, vol. 9, no. 2, pp. 152–166.

    CAS  PubMed  Google Scholar 

  13. Abou-Easa, K., Tousson, E., and Abd-El-Gawad, M., Involution signs during the postnatal life in the pineal tissue of buffalo and camel, Nat. Sci., 2009, vol. 7, no. 9, pp. 35–44.

    Google Scholar 

  14. Adeloye, A. and Felson, B., Incidence of normal pineal gland calcification in skull roentgenograms of black and white Americans, Am. J. Rentgenol., 1974, vol. 122, no. 3, pp. 503–507.

    Article  CAS  Google Scholar 

  15. Admassie, D. and Mekonnen, A., Incidence of normal pineal and choroids plexus calcification on Brain CT (computerized tomography) at Tikur Anbessa Teaching Hospital Addis Ababa, Ethiopia, Ethiop. Med. J., 2009, vol. 47, no. 1, pp. 55–60.

    PubMed  Google Scholar 

  16. Akano, A. and Bickler, S.W., Pineal gland calcification in sub-Saharan Africa, Clin. Radiol., 2003, vol. 58, no. 4, pp. 336–337.

    Article  CAS  PubMed  Google Scholar 

  17. Aljarba, N. and Abdulrahman, A.A., Pineal gland calcification within Saudi Arabian populations, J. Anat. Soc. India, 2017, vol. 66, no. 1, pp. 43–47.

    Article  Google Scholar 

  18. Arendt, J., Melatonin and the pineal gland: influence on mammalian seasonal and circadian physiology, Rev. Reprod., 1998, vol. 3, no. 1, pp. 13–22.

    Article  CAS  PubMed  Google Scholar 

  19. Baconnier, S. and Lang, S.B., Calcite microcrystals in the pineal gland of the human brain: Second harmonic generators and possible piezoelectric transducers, IEEE Trans. Dielectr. Electr. Insul., 2004, vol. 11, no. 2, pp. 203–209.

    Article  CAS  Google Scholar 

  20. Barcelos, R., Filadelpho, A., Baroni, S., and Graça, W., The morphology of the pineal gland of the Magellanic penguin (Spheniscus magellanicus Forster, 1781), J. Morphol., 2015, vol. 32, no. 3, pp. 149–156.

    Article  Google Scholar 

  21. Barros, R.A.C., Anatomia macroscópica e microscópica da glândula pineal do macaco Cebus apella, PhD Thesis, São Paulo: Univ. de São Paulo, 2006.

  22. Becker, U.G. and Vollrath, L., 24-Hour-variation of pineal gland volume, pinealocyte nuclear volume and mitotic activity in male Sprague-Dawley rats, J. Neural Transm., 1983, vol. 56, nos. 2–3, pp. 211–221.

  23. Bhatnagar, K.P. and Hoffman, R.A., Calcareous concretions in the pineal gland of the long-tongued bat, Anoura caudifer, Proc. X Int. Bat Research Conf., Boston, 1995.

  24. Bhatnagar, S. and Lall, S.B., Paradigm shifts in the histochemical profile of enzymes in the pineal gland of Rhinopoma kinneari Wroughton (Microchiroptera: Mammalia), Ann. Neurosci., 2010, vol. 15, no. 1, pp. 11–16.

    Article  Google Scholar 

  25. Bhatti, I.H. and Khan, A., Pineal calcification, J. Pak. Med. Assoc., 1977, vol. 27, no. 4, pp. 310–312.

    CAS  PubMed  Google Scholar 

  26. Bocchi, G. and Valdre, G., Physical, chemical, and mineralogical characterization of carbonate-hydroxyapatite concretions of the human pineal gland, J. Inorg. Biochem., 1993, vol. 49, no. 3, pp. 209–220.

    Article  CAS  PubMed  Google Scholar 

  27. Bolat, D., Kürüm, A., and Canpolat, S., Morphology and quantification of sheep pineal glands at pre-pubertal, pubertal and post-pubertal periods, Anat. Histol. Embryol., 2018, vol. 47, no. 4, pp. 338–345.

    Article  PubMed  Google Scholar 

  28. Bonewald, L.F., Harris, S.E., Rosser, J., et al., The turnover of phosphate in the pineal body compared with that in other parts of the brain, Biochem. J., 1947, vol. 41, no. 3, pp. 398–403.

    Article  Google Scholar 

  29. Boskey, A., Von Kossa staining alone is not sufficient to confirm that mineralization in vitro represents bone formation, Calcified Tissue Int., 2003, vol. 72, no. 5, pp. 537–547.

    Article  CAS  Google Scholar 

  30. Bulc, M., Lewczuk, B., Prusik, M., et al., Calcium concrements in the pineal gland of the Arctic fox (Vulpes lagopus) and their relationship to pinealocytes, glial cells and type I and III collagen fibers, Pol. J. Vet. Sci., 2010, vol. 13, no. 2, pp. 269–278.

    CAS  PubMed  Google Scholar 

  31. Câmara, F.V., Lopes, I.R., de Oliveira, G.B., et al., The morphology of the pineal gland of the yellow toothed cavy (Galea spixii Wagler, 1831) and red-rumped agouti (Dasyprocta leporine L., 1758), Microsc. Res. Tech., 2015, vol. 78, no. 8, pp. 660–666.

  32. Champney, T.H., Joshi, B.N., Vaughan, M.K., and Reiter, R.J., Superior cervical ganglionectomy results in the loss of pineal concretions in the adult male gerbil (Meriones unguiculatus), Anat. Rec., 1985, vol. 211, no. 4, pp. 465–468.

    Article  CAS  PubMed  Google Scholar 

  33. Chiba, M. and Yamada, M., About the calcification of the pineal gland in the Japanese, Psychol. Clin. Neurosci., 1948, vol. 2, no. 4, pp. 301–303.

    Article  Google Scholar 

  34. Cozzi, B., Cell types in the pineal gland of the horse: an ultrastructural and immunocytochemical study, Anat. Rec., 1986, vol. 216, no. 2, pp. 165–174.

    Article  CAS  PubMed  Google Scholar 

  35. Daghighi, M.H., Rezaei, V., Zarrintan, S., and Pourfathi, H., Intracranial physiological calcifications in adults on computed tomography in Tabriz, Iran, Folia Morphol., 2007, vol. 66, no. 2, pp. 115–119.

    CAS  Google Scholar 

  36. Daramola, G.F. and Olowu, A.O., Physiological and radiological implications of a low incidence of pineal calcification in Nigeria, Neuroendocrinologia, 1972, vol. 9, no. 1, pp. 41–57.

    Article  CAS  Google Scholar 

  37. Del Brutto, O.H., Mera, R.M., Lama, J., et al., Pineal gland calcification is not associated with sleep-related symptoms. A population-based study in community-dwelling elders living in Atahualpa (rural coastal Ecuador), Sleep Med., 2014, vol. 15, no. 11, pp. 1426–1427.

    Article  PubMed  Google Scholar 

  38. De Oliveira Marques, L., De Carvalho, A.F., Mançanares, A.C.F., and Mançanares, C.A.F., Estudo morfológico da glândula pineal de Procyon cancrivorus (Cuvier, 1798) (mão-pelada), Biotemas, 2010, vol. 23, no. 2, pp. 163–171.

    Google Scholar 

  39. Diehl, B.J.M., Time-related changes in size of nuclei of pinealocytes in rats, Cell Tissue Res., 1981, vol. 218, pp. 427–438.

    Article  CAS  PubMed  Google Scholar 

  40. Doyle, A.J. and Anderson, G.D., Physiologic calcification of the pineal gland in children on computed tomography: prevalence, observer reliability and association with choroid plexus calcification, Acad. Radiol., 2006, vol. 13, no. 7, pp. 822–826.

    Article  PubMed  Google Scholar 

  41. Ebada, S., Morphological and immunohistochemical studies on the pineal gland of the donkey (Equus asinus), J. Vet. Anat., 2012, vol. 5, no. 1, pp. 47–74.

    Article  Google Scholar 

  42. Fan, K.J., Pineal calcification among black patients, J. Natl. Med. Assoc., 1983, vol. 75, no. 8, pp. 765–769.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Favaron, P.O., Mançanares, C.A.F., De Carvalho, A.F., et al., Gross and microscopic anatomy of the pineal gland in Nasua nasua–coati (L., 1766), Anat. Histol. Embryol., 2008, vol. 37, no. 6, pp. 464–468.

    Article  CAS  PubMed  Google Scholar 

  44. Fındιklι, E., Inci, M.F., Gökçe, M., et al., Pineal gland volume in schizophrenia and mood disorders, Psychiatr. Danubina, 2015, vol. 27, no. 2, pp. 150–158.

  45. Fiske, V.M., Bryant, G.K., and Putnam, J., Effect of light on the weight of the pineal in the rat, Endocrinology, 1960, vol. 66, pp. 489–491.

    Article  CAS  Google Scholar 

  46. Ghosh, S. and Haldar, C., Histology and immunohistochemical localization of different hormone receptors (MT1, MT2, AR, GR, ERα) in various organs (spleen, thymus, ovary, uterus and testes) of Indian goat C. hircus, Int. J. Res. Stud. Biosci., 2015, vol. 3, pp. 50–62.

    Google Scholar 

  47. Gomes, L.A., Estudo morfológico da glâdula pineal no cão, PhD Thesis, São Paulo: Univ. de São Paulo, 2003.

  48. Grosshans, M., Vollmert, C., Vollstaedt-Klein, S., et al., The association of pineal gland volume and body mass in obese and normal weight individuals: a pilot study, Psychiatr. Danubina, 2006, vol. 28, no. 3, pp. 220–224.

    Google Scholar 

  49. Heinzeller, T., Impact of psychosocial stress on pineal structure of male gerbils (Meriones unguiculatus, Cricetidae), J. Pineal Res., 1985, vol. 2, no. 2, pp. 145–159.

    Article  CAS  PubMed  Google Scholar 

  50. Henden, T., Stokkan, K.A., Reiter, R.J., et al., Age-associated reduction in pineal beta-adrenergic receptor density is prevented by life-long food restriction in rats, Neurosignals, 1992, vol. 1, no. 1, pp. 34–39.

    Article  CAS  Google Scholar 

  51. Humbert, W. and Pévet, P., Permeability of the pineal gland of the rat to lanthanum: significance of dark pinealocytes, J. Pineal Res., 1992, vol. 12, pp. 84–88.

    Article  CAS  PubMed  Google Scholar 

  52. Hoffman, R.A. and Reiter, R.J., Pineal gland: influence on gonads of male hamsters, Science, 1965, vol. 148, pp. 1609–1611.

    Article  CAS  PubMed  Google Scholar 

  53. Jung, D. and Vollrath, L., Structural dissimilarities in different regions of the pineal gland of Pirbright white guinea-pigs, J. Neural Transm., 1982, vol. 54, nos. 1–2, pp. 117–128.

  54. Karasek, M., Smith, N.K., King, T.S., et al., Inclusion bodies in pinealocytes of the cotton rat (Sigmodon hispidus), Cell Tissue Res., 1983, vol. 232, no. 2, pp. 413–420.

    Article  CAS  PubMed  Google Scholar 

  55. Kawamura, N., Ishibashi, T., and Miyamoto, H., Scanning electron microscopy of brain sand in the bovine pineal gland, Jpn. J. Zootech. Sci., 1986, vol. 57, no. 12, pp. 1043–1045.

    Google Scholar 

  56. Kim, J., Kim, H.W., Chang, S., et al., Growth patterns for acervuli in human pineal gland, Sci. Rep., 2012, vol. 2, p. 984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kitay, J.I. and Altschule, M.D., The Pineal Gland: A Review of the Physiologic Literature, Cambridge, MA: Harvard Univ. Press, 1954.

    Google Scholar 

  58. Kodaka, T., Mori, R., Debari, K., and Yamada, M., Scanning electron microscopy and electron probe microanalysis studies of human pineal concretions, Microscopy, 1994, vol. 43, no. 5, pp. 307–317.

    CAS  Google Scholar 

  59. Kohli, N., Rastogi, H., Bhadury, S., and Tandon, V.K., Computed tomographic evaluation of pineal calcification, Indian J. Med. Res., 1992, vol. 96, pp. 139–142.

    CAS  PubMed  Google Scholar 

  60. Krstić, R., A combined scanning and transmission electron microscopic study and electron probe microanalysis of human pineal acervuli, Cell Tissue Res., 1976, vol. 174, no. 1, pp. 129–137.

  61. Kumar, P., Timoney, J.F., and Nagpal, S., Histological studies on the pineal gland of the horse, Haryana Vet., 2007, vol. 46, pp. 89–91.

    Google Scholar 

  62. Kunz, D., Schmitz, S., Mahlberg, R., et al., A new concept for melatonin deficit: on pineal calcification and melatonin excretion, Neuropsychopharmacology, 1999, vol. 21, no. 6, pp. 765–772.

    Article  CAS  PubMed  Google Scholar 

  63. Kwak, R., Takeuchi, F., Ito, S., and Kadoya, S., Intracranial physiological calcification on computed tomography (Part 1): Calcification of the pineal region, No Shinkei Geka, 1988, vol. 40, no. 6, pp. 569–574.

    CAS  Google Scholar 

  64. Lewczuk, B., Przybylska, B., and Wyrzykowski, Z., Distribution of calcified concretions and calcium ions in the pig pineal gland, Folia Histochem. Cytobiol., 1994, vol. 32, no. 4, pp. 243–249.

    CAS  PubMed  Google Scholar 

  65. Lewinski, A., Vaughan, M.K., and Champney, T.H., Darkexposure increases the number of pineal concretions in male gerbils (Meriones unguiculatus), IRCS Med. Sci., 1983, vol. 11, no. 11, pp. 977–978.

    Google Scholar 

  66. Lima, E., Santana, M., Castro, M.B., et al., Microstructure and morphoquantitative study of pineal gland in Santa Ines sheep, Ars Vet., 2011, vol. 27, no. 3, pp. 186–191.

    Google Scholar 

  67. Luchetti, F., Canonico, B., Betti, M., et al., Melatonin signaling and cell protection function, FASEB J., 2010, vol. 24, no. 10, pp. 3603–3624.

    Article  CAS  PubMed  Google Scholar 

  68. Lukaszyk, A. and Reiter, R.J., Histophysiological evidence for the secretion of polypeptides by the pineal gland, Am. J. Anat., 1975, vol. 143, no. 4, pp. 451–464.

    Article  CAS  PubMed  Google Scholar 

  69. Luke, J., Fluoride deposition in the aged human pineal gland, Caries Res., 2001, vol. 35, no. 2, pp. 125–128.

    Article  CAS  PubMed  Google Scholar 

  70. Mahlberg, R., Kienast, T., Hädel, S., et al., Degree of pineal calcification (DOC) is associated with polysomnographic sleep measures in primary insomnia patients, Sleep Med., 2009, vol. 10, no. 4, pp. 439–445.

    Article  PubMed  Google Scholar 

  71. Majidinia, M., Sadeghpour, A., Mehrzadi, S., et al., Melatonin: a pleiotropic molecule that modulates DNA damage response and repair pathways, J. Pineal Res., 2017, vol. 63, no. 1, p. e12416.

    Article  CAS  Google Scholar 

  72. Maślińska, D., Laure-Kamionowska, M., Deręgowski, K., and Maśliński, S., Association of mast cells with calcification in the human pineal gland, Folia Neuropathol., 2010, vol. 48, no. 4, pp. 276–282.

  73. Matsunaga, M.M., Crunfli, F., Fernandens, G.M., et al., Morphologic analysis of mice’s pineal gland, J. Morphol. Sci., 2011, vol. 28, pp. 157–160.

    Google Scholar 

  74. McKay, R.T., Pineal calcification in Indians and Fijians, Trans. R. Soc. Trop. Med. Hyg., 1973, vol. 67, no. 2, pp. 214–216.

    Article  CAS  PubMed  Google Scholar 

  75. Milin, J., Stress-reactive response of the gerbil pineal gland: concretion genesis, Gen. Comp. Endocrinol., 1998, vol. 110, no. 3, pp. 237–251.

    Article  CAS  PubMed  Google Scholar 

  76. Morton, D.J. and Reiter, R.J., Involvement of calcium in pineal gland function, Proc. Soc. Exp. Biol. Med., 1991, vol. 197, no. 4, pp. 378–383.

    Article  CAS  PubMed  Google Scholar 

  77. Mugondi, S.G. and Poltera, A.A., Pineal gland calcification (PGC) in Ugandans. A radiological study of 200 isolated pineal glands, Br. J. Radiol., 1976, vol. 49, no. 583, pp. 594–599.

    Article  CAS  PubMed  Google Scholar 

  78. Ongkana, N., Zhao, X.Z., Tohno, S., et al., High accumulation of calcium and phosphorus in the pineal bodies with aging, Biol. Trace Elem. Res., 2007, vol. 119, no. 2, pp. 120–127.

    Article  CAS  PubMed  Google Scholar 

  79. Oliveira, P.F., Sousa, M., Monteiro, M.P., and Alves, M.G., Pineal gland and regulatory function, in Encyclopedia of Reproduction, Amsterdam: Elsevier, 2018.

    Google Scholar 

  80. Pévet, P., The pineal gland of the mole (Talpa europaea L.), Cell Tissue Res., 1977, vol. 182, no. 2, pp. 215–219.

  81. Pévet, P., Vacuolated pinealocytes in the hedgehog (Erinaceus europaeus L.) and the mole (Talpa europaea L.), Cell Tissue Res., 1975, vol. 159, no. 3, pp. 303–309.

  82. Przybylska-Gornowicz, B., Lewczuk, B., Prusik, M., and Bulc, M., Pineal concretions in turkey (Meleagris gallapavo) as a result of collagen mediated calcification, Histol. Histopathol., 2009, vol. 24, pp. 407–415.

    CAS  PubMed  Google Scholar 

  83. Puchtler, H. and Meloan, S.N., Demonstration of phosphates in calcium deposits: a modification of von Kossa’s reaction, Histochemistry, 1978, vol. 56, nos. 3–4, pp. 177–185.

  84. Ralph, C.L., The pineal gland and geographical distribution of animals, Int. J. Biometeorol., 1975, vol. 19, no. 4, pp. 289–303.

    Article  CAS  PubMed  Google Scholar 

  85. Rath, M.F., Coon, S.L., Amaral, F.G., et al., Melatonin synthesis: acetylserotonin O-methyltransferase (ASMT) is strongly expressed in a subpopulation of pinealocytes in the male rat pineal gland, Endocrinology, 2016, vol. 157, no. 5, pp. 2028–2040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Reiter, R.J., Welsh, M.G., and Vaughan, M.K., Age-related changes in the intact and sympathetically denervated gerbil pineal gland, Am. J. Anat., 1976, vol. 146, no. 4, pp. 427–432.

    Article  CAS  PubMed  Google Scholar 

  87. Renzoni, A. and Watters, P.A., Comparative observations on the pineal body of some Australian parrots, Aust. J. Zool., 1972, vol. 20, no. 1, pp. 1–15.

    Article  Google Scholar 

  88. Roux, M., Richoux, J.P., and Cordonnier, J.L., Influence of the photoperiod on the ultrastructure of the pineal gland before and during the seasonal genital cycle in the female garden dormouse (Eliomys quercinus L.), J. Neural Transm., 1977, vol. 41, nos. 2–3, pp. 209–223.

  89. Sandyk, R., Pineal and habenula calcification in schizophrenia, Int. J. Neurosci., 1992, vol. 67, nos. 1–4, pp. 19–30.

  90. Schmid, H.A., Decreased melatonin biosynthesis, calcium flux, pineal gland calcification and aging: a hypothetical framework, Gerontology, 1993, vol. 39, no. 4, pp. 189–199.

    Article  CAS  PubMed  Google Scholar 

  91. Schmid, H.A., Requintina, P. J., Oxenkrug, G. F., and Sturner, W., Calcium, calcification, and melatonin biosynthesis in the human pineal gland: a postmortem study into age-related factors, J. Pineal Res., 1994, vol. 16, no. 4, pp. 178–183.

    Article  CAS  PubMed  Google Scholar 

  92. Singh, R., Ghosh, S., Joshi, A., and Haldar, C., Human pineal gland: Histomorphological study in different age groups and different causes of death, J. Anat. Soc. India, 2014, vol. 63, no. 2, pp. 98–102.

    Article  Google Scholar 

  93. So, N., Ismail, H.I., and Osman, D.I., Morphology of the pineal gland of the one humped camel (Camelus dromedaries), J. Vet. Med. Anim. Prod., 2013, vol. 3, no. 2.

  94. Stammer, A., Untersuchung über die Struktur und die Innervation der Epiphyse bei Vögeln, Acta Biol. (Szeged), 1961, vol. 7, pp. 65–75.

    Google Scholar 

  95. Stehle, J.H., Saade, A., Rawashdeh, O., et al., A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases, J. Pineal Res., 2011, vol. 51, no. 1, pp. 17–43.

    Article  CAS  PubMed  Google Scholar 

  96. Tan, D.X., Xu, B., Zhou, X., and Reiter, R.J., Pineal calcification, melatonin production, aging, associated health consequences and rejuvenation of the pineal gland, Molecules, 2018, vol. 23, no. 2, pp. 301–332.

    Article  CAS  PubMed Central  Google Scholar 

  97. Tapp, E. and Huxley, M., The histological appearance of the human pineal gland from puberty to old age, J. Pathol., 1972, vol. 108, no. 2, pp. 137–144.

    Article  CAS  PubMed  Google Scholar 

  98. Tharnpanich, T., Johns, J., Subongkot, S., et al., Association between high pineal fluoride content and pineal calcification in a low fluoride area, Fluoride, 2016, vol. 49, no. 4, pp. 472–484.

    Google Scholar 

  99. Turgut, A.T., Karakaş, H.M., Özsunar, Y., et al., Age-related changes in the incidence of pineal gland calcification in Turkey: a prospective multicenter CT study, Pathophysiology, 2008, vol. 15, no. 1, pp. 41–48.

    Article  CAS  PubMed  Google Scholar 

  100. Uduma, F.U., Fokam, P., and Motah, M., Incidence of physiological pineal gland and choroid plexus calcifications in craniocerebral computed tomograms in Douala, Cameroon, Global J. Med. Res., 2011, vol. 11, no. 1.

  101. Vaughan, M.K., Spanel-Borowski, K., Karasek, M., et al., Action of subcutaneous implants or injections of melatonin on reproductive and metabolic variables and pineal concretions in male gerbils (Meriones unguiculatus), Biomed. Res., 1983, vol. 4, no. 3, pp. 329–336.

    Article  CAS  Google Scholar 

  102. Vígh, B., Szél, A., Debreceni, K., et al., Comparative histology of pineal calcification, Histol. Histopathol., 1998, vol. 13, no. 3, pp. 851–870.

  103. Vígh, B., Vigh-Teichmann, I., and Aros, B., Pineal corpora arenacea produced by arachnoid cells in the bat Myotis blythi oxygnathus, Z. Mikrosk.-Anat. Forsch., 1989, vol. 103, no. 1, pp. 36–45.

  104. Vígh, B., Vigh-Teichmann, I., Heinzeller, T., and Tutter, I., Meningeal calcification of the rat pineal organ, Histochemistry, 1989, vol. 91, no. 2, pp. 161–168.

  105. Welsh, M.G., Pineal calcification: structural and functional aspects, Pineal Res. Rev., 1985, vol. 3, pp. 41–68.

    Google Scholar 

  106. Welsh, M.G. and Reiter, R.J., The pineal gland of the gerbil, Meriones unguiculatus, Cell Tissue Res., 1978, vol. 193, no. 2, pp. 323–336.

    Article  CAS  PubMed  Google Scholar 

  107. Whitehead, M.T., Oh, C., Raju, A., and Choudhri, A.F., Physiologic pineal region, choroid plexus, and dural calcifications in the first decade of life, Am. J. Neuroradiol., 2015, vol. 36, no. 3, pp. 575–580.

    Article  CAS  PubMed  Google Scholar 

  108. Wurtman, R.J., Axelrod, J., and Barchas, J.D., Age and enzyme activity in the human pineal, J. Clin. Endocrinol. Metab., 1964, vol. 24, no. 3, pp. 299–301.

    Article  CAS  PubMed  Google Scholar 

  109. Yalcin, A., Ceylan, M., Bayraktutan, O.F., et al., Age and gender related prevalence of intracranial calcifications in CT imaging; data from 12,000 healthy subjects, J. Chem. Neuroanat., 2016, vol. 78, pp. 20–24.

    Article  PubMed  Google Scholar 

  110. Zhang, L., Guo, H.L., Zhang, H.Q., et al., Melatonin prevents sleep deprivation-associated anxiety-like behavior in rats: role of oxidative stress and balance between GABAergic and glutamatergic transmission, Am. J. Transl. Res., 2017, vol. 9, no. 5, pp. 22–31.

    Google Scholar 

  111. Zimmerman, R.A. and Bilaniuk, L.T., Age-related incidence of pineal calcification detected by computed tomography, Radiology, 1982, vol. 142, no. 3, pp. 659–662.

    Article  CAS  PubMed  Google Scholar 

  112. Cutting the stone. https://cameralabs.org/8630-izvlechenie-kamnya-bezumiya. Accessed October 5, 2018.

Download references

ACKNOWLEDGMENTS

The authors express their deep gratitude to Ph.D. E.A. Khizhkin for his help with the preparation of the illustrative material, to Alexandra Elbakyan, and to the reviewers of the journal, for careful consideration of the article and the most valuable comments and suggestions, which were taken into account during editing.

Funding

The study was carried out under state order (project no. 0218-2019-0073) and co-financed by the Russian Foundation for Basic Research, grant no. 18-34-00035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Sergina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by P. Kuchina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergina, S.N., Ilyukha, V.A., Morozov, A.V. et al. Taxonomic and Ethnical Dispersion of the Phenomenon of Pineal Concretions in the Gerontological Context. Adv Gerontol 9, 232–243 (2019). https://doi.org/10.1134/S2079057019020206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057019020206

Keywords:

Navigation