Skip to main content
Log in

The Effects of Cloudberry Fruit Extract on Drosophila melanogaster Lifespan and Stress Resistance

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

We previously demonstrated that carotenoids increase the lifespan of model organisms Drosophila melanogaster and Caenorhabditis elegans. This work studies the effect of the extract of cloudberry fruits (which is characterized by a relatively high content of carotenoids and widely used for food in the north) on lifespan parameters and resistance to various types of stress in the Drosophila melanogaster flies. It is demonstrated that cloudberry extract increased median lifespan and the age of 90% mortality in females up to 11–19%, and it decreased the population aging rate in them by 13%. At the same time, the effect of the cloudberry fruit extract on the lifespan of males was weakly pronounced (and was negative in some cases). The extract did not affect the resistance of Drosophila males and females to starvation and decreased the resistance of males to oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Valuiskikh, O.E. and Teteryuk, L.V., Specific structure of Rubus chamaemorus L. populations in taiga and tundra of European northeast of Russia, Izv. Samar. Nauchn. Tsentr, Ross. Akad. Nauk, 2010, vol. 12, no. 3, pp. 652–656.

    Google Scholar 

  2. Zaprometov, M.N., Fenol’nye soedineniya: rasprostranenie, metabolizm i funktsii v rasteniyakh (Phenolic Compounds: Distribution, Metabolism, and Functions in the Plants), Moscow: Nauka, 1993.

  3. Kates, M., Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids, Amsterdam: North-Holland, 1972.

    Book  Google Scholar 

  4. Kiseleva, T.L., Lechebnye svoistva pishchevykh rastenii (Medical Properties of Food Plants), Moscow: Nauchn. Klin.-Eksp. Tsentr Tradits. Metodov Diagn. Lecheniya, 2007.

  5. Kozubov, G.M. and Taskaev, A.I., Lesnoe khozyaistvo i lesnye resursy Respubliki Komi (Forestry and Forest Resources of the Komi Republic), Moscow: Dizain, Informatsiya, Katografiya, 2000.

  6. Malsova, T.G., Popova, I.A., and Popova, O.F., Critical evaluation of the spectrophotometric determination of carotenoids, Fiziol. Rast., 1986, no. 3, pp. 615–619.

  7. Ahmad, I., Aqil, F., and Owais, M., Modern Phytomedicine: Turning Medicinal Plants into Drugs, Weinheim: Wiley, 2006.

    Book  Google Scholar 

  8. Ashburner, M., Drosophila: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  9. Boyd, O., Weng, P., Sun, X., et al., Nectarine promotes longevity in Drosophila melanogaster, Free Radical Biol. Med., 2011, vol. 50, no. 11, pp. 1669–1678.

    Article  CAS  Google Scholar 

  10. Brand-Williams, W., Cuvelier, M.E., and Berset, C., Use of a free radical method to evaluate antioxidant activity, Lebensm.-Wiss. Technol., 1995, vol. 28, pp. 25–30.

    Article  CAS  Google Scholar 

  11. Breslow, N., A generalized Kruskal–Wallis test for comparing K samples subject to unequal patterns of censorship, Biometrika, 1970, vol. 57, no. 3, pp. 579–594.

    Article  Google Scholar 

  12. Edge, R. and Truscott, G., Properties of carotenoid radicals and excited states and their potential role in biological systems, in Carotenoids: Physical, Chemical, and Biological Functions and Properties, Boca Raton: CRC Press, 2010, pp. 283–307.

    Google Scholar 

  13. Finch, C.E., Longevity, Senescence, and the Genome, Chicago: Univ. of Chicago Press, 1990.

    Google Scholar 

  14. Fleming, T.R., O’Fallon, J.R., and O’Brien, P.C., Modified Kolmogorov–Smirnov test procedures with application to arbitrarily right-censored data, Biometrics, 1980, vol. 36, no. 4, pp. 607–625.

    Article  Google Scholar 

  15. Gilmore, A.M. and Yamamoto, H.Y., Resolution of lutein and zeaxanthin using a non-endcapped, lightly carbon-loaded C-18 high-performance liquid chromatographic column, J. Chromatogr., 1991, vol. 543, no. 1, pp. 137–145.

    Article  CAS  Google Scholar 

  16. Halliwell, B. and Gutteridge, J.M.C., Free Radicals in Biology and Medicine, New York: Oxford Univ. Press, 2015, 5th ed.

    Book  Google Scholar 

  17. Huang, C.H., Hsu, F.Y., Wu, Y.H., et al., Analysis of lifespan-promoting effect of garlic extract by an integrated metaboloproteomics approach, J. Nutr. Biochem., 2015, vol. 26, no. 8, pp. 808–817.

    Article  CAS  PubMed  Google Scholar 

  18. Kaplan, E.L. and Meier, P. Nonparametric estimation from incomplete observations, in Breakthroughs in Statistics, Kotz, S. and Johnson, N., Eds., New York: Springer-Verlag, 1992, pp. 319–337.

    Google Scholar 

  19. Lashmanova, E., Proshkina E., Zhikrivetskaya S., et al., Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans, Pharmacol. Res., 2015, vol. 100, pp. 228–241.

    Article  CAS  PubMed  Google Scholar 

  20. Lashmanova K.A., Kuzivanova, O.A., and Dymova, O.V., Northern berries as a source of carotenoids, Acta Biochim. Pol., 2012, vol. 59, no. 1, pp. 133–134.

    Article  CAS  PubMed  Google Scholar 

  21. Mair, W., Piper, M.D., and Partridge, L., Calories do not explain extension of life span by dietary restriction in Drosophila, PLoS Biol., 2005, vol. 3, no. 7, p. e223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mantel, N., Evaluation of survival data and two new rank order statistics arising in its consideration, Cancer Chemother. Rep., 1966, vol. 50, no. 3, pp. 163–170.

    CAS  PubMed  Google Scholar 

  23. Marinova, D. and Ribarova, F., HPLC determination of carotenoids in Bulgarian berries, J. Food Compos. Anal., 2007, vol. 20, pp. 370–374.

    Article  CAS  Google Scholar 

  24. Mylnikov, S.V., Kokko, H.I., Karenlampi, S.O., et al., Rubus fruit juices affect lipid peroxidation in a Drosophila melanogaster model in vivo, J. Agric. Food Chem., 2005, vol. 53, no. 20, pp. 7728–7733.

    Article  CAS  PubMed  Google Scholar 

  25. Pallauf, K., Duckstein, N., and Rimbach, G., A literature review of flavonoids and lifespan in model organisms, Proc. Nutr. Soc., 2016, vol. 76, no. 2, pp. 145–162.

    Article  PubMed  Google Scholar 

  26. Peng, C., Zuo, Y., Kwan, K.M., et al., Blueberry extract prolongs lifespan of Drosophila melanogaster, Exp. Gerontol., 2012, vol. 47, no. 2, pp. 170–178.

    Article  CAS  PubMed  Google Scholar 

  27. Piper, M.D., Mair, W., and Partridge, L., Counting the calories: the role of specific nutrients in extension of life span by food restriction, J. Gerontol. A, 2005, vol. 60, no. 5, pp. 549–555.

    Article  Google Scholar 

  28. Shukla, S., Bhaskaran, N., Babcook, M.A., et al., Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway, Carcinogenesis, 2014, vol. 35, no. 2, pp. 452–460.

    Article  CAS  PubMed  Google Scholar 

  29. Singleton, V.L. and Rossi, J.A., Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, Am. J. Enol. Viticult., 1965, vol. 16, no. 3, pp. 144–158.

    CAS  Google Scholar 

  30. Solon-Biet, S.M., McMahon, A.C., Ballard, J.W., et al., The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in adlibitum-fed mice, Cell Metab., 2014, vol. 19, no. 3, pp. 418–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vayndorf, E.M., Lee, S.S., and Liu, R.H., Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans, J. Funct. Foods, 2013, vol. 5, no. 3, pp. 1236–1243.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang, C., Li Q., Redden, D.T., Weindruch, R., and Allison, D.B., Statistical methods for testing effects on “maximum lifespan,” Mech. Ageing Dev., 2004, vol. 125, no. 9, pp. 629–632.

    Article  Google Scholar 

  33. Wang, H.L., Sun, Z.O., Rehman, R.U., et al., Rosemary extract-mediated lifespan extension and attenuated oxidative damage in Drosophila melanogaster fed on high-fat diet, J. Food Sci., 2017, vol. 82, no. 4, pp. 1006–1011.

    Article  CAS  PubMed  Google Scholar 

  34. Willett, W.C., Koplan, J.P., Nugent, R., et al., Prevention of chronic disease by means of diet and lifestyle changes, in Disease Control Priorities in Developing Countries, Jamison, D.V., Eds., Washington, DC: World Bank, 2006, pp. 833–850.

    Google Scholar 

  35. Yan, F., Chen, Y., Azat, R., and Zheng, X., Mulberry anthocyanin extract ameliorates oxidative damage in HepG2 cells and prolongs the lifespan of Caenorhabditis elegans through MAPK and NRF2 pathways, Oxid. Med. Cell. Longevity, 2017, vol. 2017, pp. 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Moskalev.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashmanova, E.A., Kuzivanova, O.A., Dymova, O.V. et al. The Effects of Cloudberry Fruit Extract on Drosophila melanogaster Lifespan and Stress Resistance. Adv Gerontol 9, 254–260 (2019). https://doi.org/10.1134/S2079057019020127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057019020127

Keywords:

Navigation