Skip to main content
Log in

Temperature Dependences of Elastic Young’s Modulus and Internal Friction of 12% Chromium Ferritic-Martensitic Steels EK-181 and EP-823 with Different Heat Treatment Modes

  • MATERIALS FOR ENERGETICS AND RADIATION-HARDENED MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The elastic (Young’s moduli) and relaxation (amplitude-independent internal friction) properties of ferritic-martensitic 12% chromium steels EK-181 (low-activated) and EP-823 depending on their heat treatment modes (THT—traditional, CHT—combined) have been investigated by the method of dynamic mechanical spectroscopy in the low-frequency range (0.5–30.0 Hz) and the temperature range of 25–400°С. The temperature, frequency, and amplitude dependences of Young’s moduli and internal friction have been determined. Frequency and amplitude independence of elastic moduli is observed. The values of Young’s moduli depend on their modes of heat treatment of steels (THT, CHT) and for EK-181 steel is always higher than for EP-823 steel. The temperature dependences (spectra) of internal friction in steels for different modes of their heat treatment and at different frequencies almost monotonically increase with increasing temperature. Relaxation peaks are practically absent (within the measurement accuracy), which determines the practical absence of solid interstitial solutions (C, O, N) in the studied steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Leont’eva-Smirnova, M.V., Agafonov, A.N., Ermolaev, G.N., Ioltukhovskii, A.G., Mozhanov, E.M., Reviznikov, L.I., Tsvelev, V.V., Chernov, V.M., Bulano-va, T.M., Golovanov, V N., Ostrovskii, Z.O., Shamardin, V.K., Blokhin, A.I., Ivanov, M.B., Kozlov, E.V., et al., Microstructure and mechanical properties of low activation ferritic-martensitic steel EK-181 (RUSFER-EK-181), Perspekt. Mater., 2006, no. 6, pp. 40–52.

  2. Nikitina, A.A., Ageev, V.S., Leont’eva-Smirnova, M.V., et al., Advances in structural materials for fast-reactor cores, At. Energy, 2016, vol. 119, no. 5, pp. 362–371. https://doi.org/10.1007/s10512-016-0074-2

    Article  CAS  Google Scholar 

  3. Chernov, V.M., Leont’eva-Smirnova, M.V., Potapenko, M.M., et al., Structure–phase transformations and physical properties of ferritic–martensitic 12% chromium steels EK-181 and ChS-139, Tech. Phys., 2016, vol. 61, pp. 97–102. https://doi.org/10.1134/S1063784216010084

    Article  CAS  Google Scholar 

  4. Chernov, V.M., Kardashev, B.K., and Moroz, K.A., Cold brittleness and fracture of metals with various crystal lattices: Dislocation mechanisms, Tech. Phys., 2016, vol. 61, pp. 1015–1022. https://doi.org/10.1134/S1063784216070070

    Article  CAS  Google Scholar 

  5. Nowick, A.S. and Berry, B.S., Anelastic Relaxation in Crystalline Solids, New York–London: Academic, 1972.

  6. Golovin, I.S., Vnutrennee trenie i mekhanicheskaya spektroskopiya metallicheskikh materialov (Internal Friction and Mechanical Spectroscopy of Metal Materials), Moscow: Mosk. Inst. Stali Splavov, 2012.

  7. Postnikov, V.S., Vnutrennee trenie v metallakh (Internal Friction in Metals), Moscow: Metallurgiya, 1974.

  8. Blanter, M.S., Golovin, I.S., Neuhäuser, H., and Sinning, H.-R., Internal Friction in Metallic Materials: A Handbook, Berlin–Heidelberg: Springer, 2007.

  9. Elastic Strain Fields and Dislocation Mobility, Indenbom, V.L. and Lothe, J., Eds., Amsterdam: North-Holland, 1992.

    Google Scholar 

  10. Ivanov, L.I. and Platov, Yu.M., Radiatsionnaya fizika metallov i ee prilozheniya (Radiation Physics of Metals and Its Applications), Moscow: Interkontakt Nauka, 2002.

  11. Samoilov, A.G., Volkov, V.S., and Solonin, M.I., Teplovydelyayushchie elementy yadernykh reaktorov (Fuel Elements of Nuclear Reactors), Moscow: Energoatomizdat, 1996.

  12. Terentyev, D., Bonny, G., Castin, N., Domain, C., Malerba, L., Olsson, P., Moloddtsov, V., and Pasia-not, R.C., Further development of large-scale atomistic modelling techniques for Fe–Cr alloys, J. Nucl. Mater., 2011, vol. 409, pp. 167–175.

    Article  CAS  Google Scholar 

  13. Sivak, A.B., Romanov, V.A., Demidov, D.N., Si-vak, P.A., and Chernov, V.M., Interatomic interaction potentials for simulation of atomic collision cascades and self-point defects in BCC Fe and V metals, Vopr. At. Nauki Tekh., Ser. Materialoved. Nov. Mater., 2019, no. 4 (100), pp. 5–24.

  14. Kurdyumov, G.V., Utevskii, L.M., and Entin, R.I., Prevrashcheniya v zheleze i stali (Transformations in Iron and Steel), Moscow: Nauka, 1977.

  15. Seki, I. and Nagata, K., Lattice constant of iron and austenite including its supersaturation phase of carbon, ISIJ Int., 2005, vol. 45, no. 12, pp. 1789–1794.

    Article  CAS  Google Scholar 

  16. Roshchupkin, V.V., Lyakhovitskii, M.M., Minina, N.A., et al., The use of acoustic methods to investigate the dynamics of recrystallization and phase transitions in Armco iron and structural steel, High Temp., 2004, vol. 42, pp. 883–887. https://doi.org/10.1007/s10740-005-0032-5

    Article  CAS  Google Scholar 

  17. Pascheto, W. and Johari, G.P., Annealing and aging of interstitial C in α-Fe, As measured by internal friction, Metall. Mater. Trans. A, 1996, vol. 27, pp. 2461–2469.

    Article  Google Scholar 

  18. Walz, F., Weller, M., and Hircher, M., Magnetic after-effect and internal friction as quantitative tools for the analysis of carbon and nitrogen in α-Iron, Phys. Status Solidi A, 1996, vol. 154, pp. 765–778.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.A. Ashmarin (IMET RAS) for help in obtaining X-ray diffraction data for the studied steel samples.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. A. Moroz, V. M. Chernov, M. V. Leontieva-Smirnova or E. M. Mozhanov.

Additional information

Translated by Sh. Galyaltdinov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moroz, K.A., Chernov, V.M., Leontieva-Smirnova, M.V. et al. Temperature Dependences of Elastic Young’s Modulus and Internal Friction of 12% Chromium Ferritic-Martensitic Steels EK-181 and EP-823 with Different Heat Treatment Modes. Inorg. Mater. Appl. Res. 13, 1223–1228 (2022). https://doi.org/10.1134/S207511332205029X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207511332205029X

Keywords:

Navigation