Skip to main content
Log in

New Method for Obtaining ZnSb and Zn4Sb3

  • MATERIALS OF ELECTRONIC ENGINEERING
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

A method is developed for the synthesis of ZnSb and β-Zn4Sb3 compounds using fast melt crystallization on a rotating disk (melt spinning) to obtain powders. The microstructure and thermoelectric properties of samples obtained by hot pressing of powders prepared by this method are studied. The microstructure, chips, and composition of the samples are studied using optical and scanning electron microscopy. The nanosized grain structure of the obtained materials is established. The thermoelectric parameters of the samples, the Seebeck coefficient, electrical conductivity, and thermal conductivity, are measured in the temperature range from 300 to 700 K. The coefficient of thermoelectric figure of merit is calculated. The highest quality factor ( = 0.8 at 600 K) is observed for hot-pressed samples of β-Zn4Sb3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ioffe A. F., Poluprovodnikovye termoelementy (Semiconductor Thermoelements), Moscow–Leningrad: Akad. Nauk SSSR, 1960.

  2. Caillat, T., Fleurial, J.-P., and Borshchevsky, A., Preparation and thermoelectric properties of semiconducting Zn4Sb3, J. Phys. Chem. Solids, 1997, vol. 58, pp. 1119–1125. https://doi.org/10.1016/S0022-3697(96)00228-4

    Article  CAS  Google Scholar 

  3. Ivanova, L.D., Granatkina, Yu.V., Mal’chev, A.G., Nikhezina, I.Yu., Nikulin, D.S., Krivoruchko, S.P., Zaldastanishvili, M.I., and Sudak, N.M., The use of new technologies for obtaining nanomaterials of solid solutions of bismuth and antimony chalcogenides by rapid melt crystallization, in Perspektivnye Tekhnologii i Materialy (Promising Technologies and Materials), Sevastopol’: Sevastopol State Univ., 2020, pp. 70–74.

  4. Ivanova, L.D., Granatkina, Yu.V., Mal’chev, A.G., et al., Preparation and thermoelectric properties of microcrystalline lead telluride, Inorg. Mater., 2020, vol. 56, pp. 791–798. https://doi.org/10.1134/S0020168520080063

    Article  CAS  Google Scholar 

  5. Ivanova, L.D., Granatkina, Yu.V., Nikhezina, I.Y., et al., Thermoelectric properties of fine-grained germanium telluride, Inorg. Mater.: Appl. Res., 2021, vol. 12, pp. 347–353. https://doi.org/10.1134/S2075113321020192

    Article  Google Scholar 

  6. Lo, C.-W.T., Svitlyk, V., Chernyshov, D., and Mozharivskyj, Y., The updated Zn–Sb phase diagram. How to make pure Zn13Sb10 (“Zn4Sb3”), Dalton Trans., 2018, vol. 47, pp. 11512–11520. https://doi.org/10.1039/C8DT02521E

    Article  CAS  PubMed  Google Scholar 

  7. Vuillard, G. and Hiton, J.-P., On the transformations of the intermetallic phases of the antimone-zinc system, C.R. Acad. Sci., 1966, vol. 263, no. 17, pp. 1018–1021.

    CAS  Google Scholar 

  8. Nylén, J., Lidin, S., Andersson, M., Iversen, B.B., Liu, H., Newman, N., and Häussermann, U., Low-temperature structural transitions in the phonon-glass thermoelectric material β-Zn4Sb3: Ordering of Zn interstitials and defects, Chem. Mater., 2007, vol. 19, pp. 834–838. https://doi.org/10.1021/cm062384j

    Article  CAS  Google Scholar 

  9. Almin, K.E., Crystal structure of CdSb and ZnSb, Acta Chem. Scand., 1948, vol. 3, pp. 400–407.

    Article  Google Scholar 

  10. Snyder, G.J., Christensen, M., Nishibori, E., Cail-lat, T., and Iversen, B.B., Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties, Nat. Mater., 2004, vol. 3, pp. 458–463. https://doi.org/10.1038/nmat.1154

    Article  CAS  PubMed  Google Scholar 

  11. Ivanova, L.D., Granatkina, Y.V., Mal’chev, A.G., et al., Preparation and thermoelectric properties of zinc antimonide, Inorg. Mater., 2021, vol. 57, no. 7, pp. 674–682. https://doi.org/10.1134/S0020168521070177

    Article  CAS  Google Scholar 

  12. Ravich, Yu.I., Efimova, B.A., and Smirnov, I.A., Metody issledovaniya poluprovodnikov v primenenii k khalkogenidam svintsa (Methods of Research of Semiconductors in Application to Lead Chalcogenides), Moscow: Nauka, 1968.

  13. Dobryden’, K.A., Phase diagram of the Sb–Zn system, Neorg. Mater., 1983, vol. 19, no. 4, pp. 494–501.

    Google Scholar 

  14. Timothy, C.-W., Kolodiazhnyi, T., Song, S., Tseng, Y.‑C., and Mozharivskyj, Y., Experimental survey of dopants in Zn13Sb10 thermoelectric material, Intermetallics, 2020, vol. 123, art. ID 106831. https://doi.org/10.1016/j.intermet.2020.106831

  15. Toberer, E.S., Sasaki, K.A., Chisholm, C.R.I., Haile, S.M., Godard, W.A., and Snuder, G.J., Local structure of interstitial Zn inβ-Zn4Sb3, Phys. Status Solidi RRL, 2007, vol. 1, pp. 253–255. https://doi.org/10.1002/pssr.200701168

    Article  CAS  Google Scholar 

  16. Prokofieva, L.V., Konstantinov, P.P., and Shabaldin, A.A., On the tin impurity in the thermoelectric compound ZnSb: Charge-carrier generation and compensation, Semiconductors, 2016, vol. 50, pp. 741–750. https://doi.org/10.1134/S1063782616060208

    Article  CAS  Google Scholar 

  17. Lin, J., Ma, L., Zheng, Z., Chen, Y., Cui, Z., Wang, J., and Qiao, G., Thermoelectric properties of Zn4Sb3 composites with incomplete reaction, J. Electron. Mater., 2019, vol. 48, no. 2, pp. 1159–1163.https://doi.org/10.1007/s11664-018-06851-7

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out according to the state task no. 075-00715-22-00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. D. Ivanova or M. I. Zaldastanishvili.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, L.D., Granatkina, Y.V., Nikhezina, I.Y. et al. New Method for Obtaining ZnSb and Zn4Sb3. Inorg. Mater. Appl. Res. 13, 1209–1215 (2022). https://doi.org/10.1134/S2075113322050136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113322050136

Keywords:

Navigation